Skip to main content

Advertisement

Log in

Effect of Aqueous Extract of Glycyrrhiza glabra on the Biochemical Changes Induced by Cadmium Chloride in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Twenty four rats were divided into four groups (6 rats/group): 1—control group; 2—licorice (Glycyrrhiza glabra) extract: rats administered with an oral dose of licorice (3 mg/ml/kg/day) using stomach tube for 4 weeks; 3—cadmium chloride group: rats administered with an oral dose of CdCl2 (10 mg/kg/day) using stomach tube for 4 weeks; and 4—licorice extract + CdCl2 group: rats administered orally with both licorice (3 mg/ml/kg/day) and CdCl2 (10 mg/kg/day) using stomach tube for 4 weeks. Administration of CdCl2 induced significant increase in thiobarbituric acid reactive substance (TBARS), paraoxonase-1 (proxon-1), caspase-3 (casp-3) activities, and significant decrease in superoxide dismutase (SOD), catalase (CAT) activities, and glutathione (GSH) content in hepatic tissue. Significant increase in TBARS and kidney injury molecule-1 (KIM-1) and significant decrease in SOD, CAT activities, and GSH content in renal tissue were recorded. Significant increase in alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) activities, urea, creatinine, and significant decrease in butyryl choline esterase (BChE), total triiodothyronine (T3), and total thyroxin (T4) were recorded in serum. Histological investigation of renal cells showed vacuolations of endothelium lining glomerular tuffs and vacuolations of epithelium lining renal tubules. Investigation of ovarian tissue showed dilatation of interstitial blood vessels and congestion of multiple corpus luteum in CdCl2-treated rats. Significant improvements in the biochemical and histological changes were observed in CdCl2 + licorice extract group. It could be concluded that licorice extract alleviates the hazardous effects of cadmium chloride, which may be attributed to its antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Burtis CA, Bruns DE (2008) Tietz fundamental of clinical chemistry and molecular diagnostics,7th ed

  2. Jarup L, Hellströn L, Alfvén T, Carlsson MD, Grubb A, Persson B, Pettersson C, Spang G, Schutz A, Elinder C (2000) Low level exposure to cadmium and early kidney damage: the OSCAR study. Occup Environ Med 57(10):668–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Friberg L, Nordberg GF, Vouk VB (eds) (1986) Hand book of the toxicology of metals, vol vol II. Amsterdam, Elsevier, pp 130–184

    Google Scholar 

  4. Falk RT, Pickle LW, Fontham ET, Correa P, Morse A, Chen V, JJJr F (1990) Occupation and pancreatic cancer risk in Louisiana. Am J Ind Med 18:565–576

    Article  CAS  PubMed  Google Scholar 

  5. Chul-Whan CMD (1987) A study on effect of garlic to the heavey metal poisoning of rat. J Korean Med Sci 2:213–223

    Article  Google Scholar 

  6. Renugadevi J, Milton PS (2010) Cadmium induced hepatotoxicity in rats and the protective effect of naringin. Exp Toxicol Pathol 62:171–181

    Article  CAS  PubMed  Google Scholar 

  7. Alhazza IM (2008) Cadmium induced hepatotoxicity and oxidative stress in rats: protection by selenium. Res J Environ Sci 2(4):305–309

    Article  CAS  Google Scholar 

  8. Akyolcu MC, Ozcelik D, Durseu S, Toplan S, Kahraman R (2003) Accumulation of cadmium in tissue and its effect on live performance. J Phys IV France 107:333–336

    Article  CAS  Google Scholar 

  9. Zhang W, Yan J, Wang J et al (2007) Comparative studies on the increae of uterine weight and related mechanisms of cadmium and pnonylphenol. Toxicology 241:84–91

    Article  CAS  PubMed  Google Scholar 

  10. Resnick B, Avers D (2012) Motivation and patient education: implications for physical therapist practice. In: Geriatric Physical Therapy, 3rd edn. Mosby Inc., USA, pp 183–206

    Chapter  Google Scholar 

  11. Shofali A (2003) Treatment with herbal and medical plants. Alternative medicine. International Academia, Beirut, Lebanon, p 120

    Google Scholar 

  12. Maysoon MN, Arieg AW, Jazaer AB, Ghassan M (2011) Biological study of the effect of licorice roots extracts on serum lipid profile, liver enzymes, and kidney function tests in albino mice. Afr J Biotechnol 10(59):12702–12706

    Google Scholar 

  13. Asgary S, Jafari-Dinan N, Madani H, Mahzoni P, Naderi GH (2007) Effect of Glycyrrhiza glabra extract on aorta wall atherosclerotic lesion in hypercholesterlemic rabbits. Pak J Nutr 6(4):313–317

    Article  Google Scholar 

  14. Vaya J, Belinky P, Aviram M (1997) Antioxidant constituents from licorice roots isolation structure elucidation and antioxidative capacity toward LDL oxidation. Free Radic. Biol. Med. 23(2):302

    Article  CAS  PubMed  Google Scholar 

  15. Shirwaikar A, Malini S, Kumari SC (2003) Protective effect of Pongamia pinnata flowers against cisplatin and gentamicin induced-nephrotoxicity in rats. Indian J Exp Biol 41:58–62

    PubMed  Google Scholar 

  16. Utsunomiya T, Kobayashi M, Pollard RB, Suzuki F (1997) Glycyrrhizin an active component of licorice roots reduces morbidity and mortality of mice infected with lethal doses of influenza virus. Antimicrob Agents Chemother 41(3):551–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kang JS, Yoon YD, Cho IJ et al (2005) Glbridin, an isoflavon from licorice root inhibits inducible nitric oxide synthase expression and improves survival of mice in experimental model of septic shock. J Pharmacol Exp Ther 312(3):1187–1194

    Article  CAS  PubMed  Google Scholar 

  18. Kai K, Komine K, Asai K, Kuroishi T, Komine Y, Kozutsumi T, Itagaki M, Ohta M, Endo Y, Kumagai K (2003) Anti-inflammatory effects of intramammary infusions of glycyrrhizin in lactating cows with mastitis caused by coagulase negative staphylococci. Am J Vet Res 64(10):1213–1220

    Article  CAS  PubMed  Google Scholar 

  19. Fujisawa K, Watanabe Y, Kimura K (1990) Therapeutic approach to chronic active hepatitis with glycyrrhizin. Asian Med Journal 23:745–756

    Google Scholar 

  20. Quaschning T, Ruschitzak F, Niggli B et al (2001) Influence of aldosterone vs endothelin receptor antagonism on renovascular function in liquorice induced-hypertension. Nephrol Dial Transplant 16(11):2146–2151

    Article  CAS  PubMed  Google Scholar 

  21. Dallak M (2009) Camelʼs milk protects against cadmium chloride induced-hypocromic microcytic anemia and oxidative stress in red blood cells of white albino rats. Am J Pharm and Toxicol 4(4):136–143

    Article  CAS  Google Scholar 

  22. Yoshioka T, Kawada K, Shimada T, Mori M (1979) Lipid peroxidation in maternal and cord blood and protective mechanism against activated oxygen toxicity in the blood. Am J Obstet Gynecol 135(3):372–376

    Article  CAS  PubMed  Google Scholar 

  23. Johansson LH, Borg LA (1988) Spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem 1(74):331

    Article  Google Scholar 

  24. Beutler E, Duran O, Kelly B (1963) Improved method of blood glutathione. J Lab Clin Med 61(51):882–888

    CAS  PubMed  Google Scholar 

  25. Minami M, Yoshikawa H (1979) A simplified assay method of superoxide dismutase. Clin Chim Acta 92:337–342

    Article  CAS  PubMed  Google Scholar 

  26. Reitman S, Frankel SA (1957) A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  27. Knedel M, Bottger R (1967) A kinetic method for determination of the activity of pseudocholine esterase. Klin Wschr 45:325–327

    Article  CAS  PubMed  Google Scholar 

  28. Szasz G (1969) A kinetic photometric method for serum gamma glutamyl transpeptidase. Clin Chem 15(2):124–136

    CAS  PubMed  Google Scholar 

  29. Belfield A, Goldberg DM (1971) Revised assay for serum phenyl phosphatase activity using 4-aminoantipyrine. Enzyme 12:561–573

    Article  CAS  PubMed  Google Scholar 

  30. Walter M, Gerade H (1970) Ultramicromethod for the determination of conjugated and total bilirubin in serum or plasma. Microchem J 15:231–243

    Article  Google Scholar 

  31. Fawcett JK, Scott JE (1960) A rapid and prices method for the determination of urea. Clin Path 13:156–159

    Article  CAS  Google Scholar 

  32. Faukemar WR, King JW (1976) Quantitative colorimetric determination of creatinine in serum. In: Fundamental of clinical chemistry, 2nd ed. (NY)

  33. Snedecor GW, Cochran WG (1982) Statistical methods, 7th edn. Iowa State, University Press, Ams, Iowa, USA

    Google Scholar 

  34. Duncan, DB(1955) (1955) Multiple range and multiple F-test. Biometrics 11:1

    Article  Google Scholar 

  35. Nampoothiri LP, Gupta S (2008) Biochemical effects of gestational coexposure to lead and cadmium on reproductive performance, placenta and ovary. J Biochem Mol Toxicol 22(5):337–344

    Article  CAS  PubMed  Google Scholar 

  36. Renugadevi J, Prabu SM (2010) Cadmium induced hepatotoxicity in rats and the protective effect of naringin. Exp Toxicol Pathol 62:171–181

    Article  CAS  PubMed  Google Scholar 

  37. Jyoti S, Sachin V (2017) A mini review: hepatoprotective natural products. Int J Pharma Res Sch (IJPRS) 6(2):81–89

    CAS  Google Scholar 

  38. Usoh IF, Akpan EJ, Etim EO et al (2005) Antioxidant action of dried flower extract of hibiscus sabdariffalon sodium arsenite induced oxidative stress in rats. Pakistan J Nutr 4:135–141

    Article  Google Scholar 

  39. Jacobson KB, Turner JE (1980) The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicology 16:1–37

    Article  CAS  PubMed  Google Scholar 

  40. Partrick L (2003) Toxic metals and antioxidants. Part II. The role of antioxidant in arsenic and cadmium toxicity. Alter Med. Rev 2:106–128

    Google Scholar 

  41. Rajesh M, Latha M (2004) Protective activity of Glycyrrhiza glabra Linn. on carbon tetrachloride induced-peroxidative damage. Ind J Pharm 36(5):284

    Google Scholar 

  42. Marsillach J, Camps J, Ferré N et al (2009) Paraoxonase-1 is related to inflammation, fibrosis and PPAR-delta in experimental liver disease. BMC Gastroentrology 3:9

    Google Scholar 

  43. Camps J, Marsillach J, Joven J (2009) Measurement of serum paraoxonase-1 activity in the evaluation of liver function. World J Gastroentrol 15(16):1929–1933

    Article  CAS  Google Scholar 

  44. Shih CM, Wu JS, Ko WC, Wang LF, Wei YH, Liang HF, Chen YC, Chen CT (2003) Mitochondria mediated caspase on dependent apoptosis induced by cadmium in normal human lung cells. J Cell Biochem 89:335–347

    Article  CAS  PubMed  Google Scholar 

  45. Zamzami N, Kroemer G (1999) Apoptosis: condensed matter in cell death. Nature 401:127–128

    Article  CAS  PubMed  Google Scholar 

  46. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Al-Azemi M, Omu AE, Omu FE et al (2010) Lithium protects against toxic effects of cadmium in the rat testes. J Assist Reprod Genet 27:469–476

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bailly V, Zhang Z, Meier W, Cate R, Sanicola M, Bonventre JV (2002) Shedding of kidney injury molecule-1 a putative adhesion protein involved in renal regeneration. J Biol Chem 277:39739–39748

    Article  CAS  PubMed  Google Scholar 

  49. Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson KL, Miller TJ, Bonventre JV, Goering PL (2008) Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury and chromium. Toxicol Sci 101:159–170

    Article  CAS  PubMed  Google Scholar 

  50. Sabbisetti VS, Waikar SS, Antoine DJ et al (2014) Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol 25:1–10

    Article  CAS  Google Scholar 

  51. Albasha MO, Azab AE (2014) Effect of cadmium on the liver and amelioration by aqueous extract of fenugreek seeds, rosemary and cinnamon in guinea pigs: histological and biochemical study. Cell Biology 2(2):7–17

    Article  Google Scholar 

  52. Dardouri K, Haouem S, Gharbi I, Sriha B, Haouas Z, El Hani A, Hammami M (2016) Combined effects of Cd and Hg on liver and kidney histology and function in Wistar rats. J Agric Chem Environment 5:159–169

    CAS  Google Scholar 

  53. Gaurav D, Preet S, Dua KK (2011) Prevention of cadmium bioaccumulation by herbal adaptogen: Spirulina platensis. J Chem Pharm Res (5):603–608

  54. Naik P (2010) Biochemistry, 3rd ed, vol 138-141. Jaypee Publishers Ltd., Panama P, p 565

    Google Scholar 

  55. Ajilore BS, Ayannuga OA (2012) Hepatoprotective potential of methanolic extract of Momordica charantia Linn leaf extract on cadmium induced hepatotoxicity in rats. J Nat Sci Res 2(7):41–47

    Google Scholar 

  56. Ajilore BS, Atere TG, Oluogun WA et al (2012) Protective effects of Moringa oleifera Lam on cadmium induced liver and kidney damage in male Wistar rats. Int J Phytother Res 2(3):42–50

    Google Scholar 

  57. Gayatri G, Ramesh BJ, Sumalatha N et al (2011) Hepatoprotective activity of ethanolic extract of Starchytarpheta indica on Wistar rats. Pharmacie Globale (IJCP) 2(1):1–4

    Google Scholar 

  58. Mahmoud SM, Bahr HI (2015) Potential protective effects of Ginkgo biloba and rosemary on hepatoencephalopathy and chromosomal aberrations induced by manganese chloride in rats. Int J Adv Res 3(3):483–497

    CAS  Google Scholar 

  59. Milatovic D, Gupta RC, Aschner M (2006) Anticholine esterase toxicity and oxidative stress. Sci World J 6:295–310

    Article  CAS  Google Scholar 

  60. Dehpour AR, Zahedi H, Amini SH et al (1999) Effect of glycyrrhiza derivatives against acetaminophen induced-hepatotoxicity. Iran J Med Sci 24(1&2):26–31

    Google Scholar 

  61. Yamamura Y, Kotaki H, Tanaka N, Aikawa T, Sawada Y, Iga T (1997) The pharmacokinetics of glycyrrhizin and its restorative effect on hepatic function in patient with chronic hepatitis and in chronically carbontetra chloride intoxicated rats. Biopharma Drug Depos 18(8):717–725

    Article  CAS  Google Scholar 

  62. EA (Environment Agency) (2009) Contaminants in soil: updated collation of toxicological data and intake values for humans, Cadmium. Science report: SX050021/TOX 3. Environment Agency, Bristol

    Google Scholar 

  63. Marcinkiewicz BP, Sawicki B, Brzbska MM et al (2003) Effect of chronic administration of cadmium on the rat thyroid radio immunological and immune histochemical studies. Folia Histochem Cytobiol 40:95–96

    Google Scholar 

  64. Pilet M, Brzoska M, Sawicki B (2004) Histological evaluation of the thyroid structure after co-exposure to cadmium and ethanol. Rocz Akad Med Bialymst 49(1):152

    Google Scholar 

  65. Yoshizuka M, Mori N, Hamasaki K, Tanaka I, Yokoyama M, Hara K, Doi Y, Umezu YI, Araki H, Sakamoto Y, Miyazaki M, Fujimoto S (1991) Cadmium toxicity in the thyroid gland of pregnant rats. Exp Mol Pathol 55(1):97–104

    Article  CAS  PubMed  Google Scholar 

  66. Gupta P, Kar A (1997) Is α-tocopherol effective in the amelioration of cadmium induced thyroid-dysfunction in adult male mouse. Elements Electrolytes 14:150–153

    CAS  Google Scholar 

  67. Paier B, Hagmuller K, Noli M et al (1993) Changes induced by cadmium administration on thyroxine deiodination and sulphadril group in rats liver. J Endocrinol 138(2):219–224

    Article  CAS  PubMed  Google Scholar 

  68. Hamann I, Seidlova WD, Wuttke W et al (2006) Effects of isoflavonoids and other plant derived compounds on the hypothalamus-pituitary-thyroid hormone axis. Maturitas 55:S14–S25

    Article  CAS  Google Scholar 

  69. Mitsumori K, Shibutani S, Sato S et al (1998) Relationship between the development of hepato-renal toxicity and cadmium accumulation in rats given minimum to large amounts of cadmium chloride in the long term: preliminary study. Arch Toxicol 72:545–552

    Article  CAS  PubMed  Google Scholar 

  70. Zitkevicius V, Smalinskiene A, Savickien et al (2011) Assessment of the effect of Echinacea purpurea extract on the accumulation of cadmium in liver and kidney, apoptotic-mitotic activity of liver cells. J Med Plants Res 5:743–750

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank Prof. Dr. K.A. Ahmed, Professor of Veterinary Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt, for performing the histological examinations and interpretations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naglaa EL-Shahat Mohamed.

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest. The author alone is responsible for the content and writing of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, N.ES. Effect of Aqueous Extract of Glycyrrhiza glabra on the Biochemical Changes Induced by Cadmium Chloride in Rats. Biol Trace Elem Res 190, 87–94 (2019). https://doi.org/10.1007/s12011-018-1525-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1525-5

Keywords

Navigation