Skip to main content
Log in

Analysis of Human Serum and Whole Blood for Mineral Content by ICP-MS and ICP-OES: Development of a Mineralomics Method

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Minerals are inorganic compounds that are essential to the support of a variety of biological functions. Understanding the range and variability of the content of these minerals in biological samples can provide insight into the relationships between mineral content and the health of individuals. In particular, abnormal mineral content may serve as an indicator of illness. The development of robust, reliable analytical methods for the determination of the mineral content of biological samples is essential to developing biological models for understanding the relationship between minerals and illnesses. This paper describes a method for the analysis of the mineral content of small volumes of serum and whole blood samples from healthy individuals. Interday and intraday precision for the mineral content of the blood (250 μL) and serum (250 μL) samples was measured for eight essential minerals—sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), iron (Fe), zinc (Zn), copper (Cu), and selenium (Se)—by plasma spectrometric methods and ranged from 0.635 to 10.1 % relative standard deviation (RSD) for serum and 0.348–5.98 % for whole blood. A comparison of the determined ranges for ten serum samples and six whole blood samples provided good agreement with literature reference ranges. The results demonstrate that the digestion and analysis methods can be used to reliably measure the content of these minerals and potentially of other minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ICP-MS:

Inductively coupled plasma mass spectrometry

ICP-OES:

Inductively coupled plasma optical emission spectroscopy

NIST:

National Institute of Standards and Technology

ELOQ:

Estimated limit of quantitation

LOD:

Limit of detection

KED:

Kinetic energy discrimination

SRM:

Standard reference material

SF-MS:

Sector field mass spectrometry

References

  1. Frausto da Silva JJR, Williams RJP (2001) The biological chemistry of the elements, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  2. Coffey AJ, Durkie M, Hague S, McLay K, Emmerson J, Lo C, Klaffke S, Joyce CJ, Dhawan A, Hadzic N, Mieli-Vergani G, Kirk R, Allen KE, Nicholl D, Wong S, Griffiths W, Smithson S, Giffin N, Taha A, Connolly S, Gillett GT, Tanner S, Bonham J, Sharrack B, Palotie A, Rattray M, Dalton A, Bandmann O (2013) A genetic study of Wilson's disease in the United Kingdom. Brain 136(Part 5):1476–1487. doi:10.1093/brain/awt035

    Article  PubMed Central  PubMed  Google Scholar 

  3. Mainous AG III, Wright RU, Hulihan MM, Twal WO, McLaren CE, Diaz VA, McLaren GD, Argraves WS, Grant AM (2014) Elevated transferrin saturation, health-related quality of life and telomere length. Biometals 27(1):135–141. doi:10.1007/s10534-013-9693-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hu LG, He B, Wang YC, Jiang GB, Sun HZ (2013) Metallomics in environmental and health related research: current status and perspectives. Chin Sci Bull 58(2):169–176. doi:10.1007/s11434-012-5496-1

    Article  CAS  Google Scholar 

  5. Wang B, Feng WY, Zhao YL, Chai ZF (2013) Metallomics insights for in vivo studies of metal based nanomaterials. Metallomics 5(7):793–803. doi:10.1039/c3mt00093a

    Article  CAS  PubMed  Google Scholar 

  6. Sussulini A, Becker JS (2011) Combination of PAGE and LA-ICP-MS as an analytical workflow in metallomics: state of the art, new quantification strategies, advantages and limitations. Metallomics 3(12):1271–1279. doi:10.1039/c1mt00116g

    Article  CAS  PubMed  Google Scholar 

  7. Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38(4):1119–1138. doi:10.1039/b713633c

    Article  CAS  PubMed  Google Scholar 

  8. Yasuda H, Yonashiro T, Yoshida K, Ishii T, Tsutsui T (2006) Relationship between body mass index and minerals in male Japanese adults. Biomed Res Trace Elem 17:316–321

    CAS  Google Scholar 

  9. Liu F, Gan PP, Wu HN, Woo WS, Ong ES, Li SFY (2012) A combination of metabolomics and metallomics studies of urine and serum from hypercholesterolaemic rats after berberine injection. Anal Bioanal Chem 403(3):847–856. doi:10.1007/s00216-012-5923-9

    Article  CAS  PubMed  Google Scholar 

  10. Easter RN, Chan QL, Lai B, Ritman EL, Caruso JA, Qin ZY (2010) Vascular metallomics: copper in the vasculature. Vasc Med 15(1):61–69. doi:10.1177/1358863x09346656

    Article  PubMed Central  PubMed  Google Scholar 

  11. Popovic D, Bozic T, Stevanovic J, Frontasyeva M, Todorovic D, Ajtic J, Jokic VS (2010) Concentration of trace elements in blood and feed of homebred animals in Southern Serbia. Environ Sci Pollut Res 17:1119–1128

    Article  CAS  Google Scholar 

  12. Yoshinaga J, Li JZ, Suzuki T, Karita K, Abe M, Fujii H, Mishina J, Morita M (1991) Trace elements in human transitory milk: variation caused by biological attributes of mother and infant. Biol Trace Elem Res 31:159–170

    Article  CAS  PubMed  Google Scholar 

  13. Karadas S, Sayin R, Aslan M, Gonullu H, Kati C, Dursun R, Duran L, Gonullu E, Demir H (2014) Serum levels of trace elements and heavy metals in patients with acute hemorrhagic stroke. J Membr Biol 247:175–180

    Article  CAS  PubMed  Google Scholar 

  14. Taylor A, Day MP, Hill S, Marshall J, Patriarca M, White M (2014) Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages. J Anal Atom Spectrom 29(3):386–426. doi:10.1039/c4ja90001d

    Article  CAS  Google Scholar 

  15. Olmedo P, Pla A, Hernandez AF, Lopez-Guarnido O, Rodrigo L, Gil F (2010) Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry. Anal Chim Acta 659(1–2):60–67. doi:10.1016/j.aca.2009.11.056

    Article  CAS  PubMed  Google Scholar 

  16. Zaksas NP, Gerasimov VA, Nevinsky GA (2010) Simultaneous determination of Fe, P, Ca, Mg, Zn, and Cu in whole blood by two-jet plasma atomic emission spectrometry. Talanta 80(5):2187–2190. doi:10.1016/j.talanta.2009.10.046

    Article  CAS  PubMed  Google Scholar 

  17. Ivanenko NB, Ivanenko AA, Solovyev ND, Zeimal AE, Navolotskii DV, Drobyshev EJ (2013) Biomonitoring of 20 trace elements in blood and urine of occupationally exposed workers by sector field inductively coupled plasma mass spectrometry. Talanta 116:764–769. doi:10.1016/j.talanta.2013.07.079

    Article  CAS  PubMed  Google Scholar 

  18. Kolachi NF, Kazi TG, Afridi HI, Kazi N, Khan S, Kandhro GA, Shah AQ, Baig JA, Wadhwa SK, Shah F, Jamali MK, Arain MB (2011) Status of toxic metals in biological samples of diabetic mothers and their neonates. Biol Trace Elem Res 143(1):196–212. doi:10.1007/s12011-010-8879-7

    Article  CAS  PubMed  Google Scholar 

  19. Afridi HI, Kazi TG, Kazi N, Jamali MK, Arain MB, Jalbani N, Sarfaraz RA, Shah A, Kandhro GA, Shah AQ, Baig JA (2008) Potassium, calcium, magnesium, and sodium levels in biological samples of hypertensive and nonhypertensive diabetes mellitus patients. Biol Trace Elem Res 124(3):206–224. doi:10.1007/s12011-008-8142-7

    Article  CAS  PubMed  Google Scholar 

  20. Bocca B, Alimonti A, Petrucci F, Violante N, Sancesario G, Forte G, Senofonte O (2004) Quantification of trace elements by sector field inductively coupled plasma mass spectrometry in urine, serum, blood and cerebrospinal fluid of patients with Parkinson's disease. Spectrochim Acta B 59(4):559–566. doi:10.1016/j.sab.2004.02.007

    Article  Google Scholar 

  21. Bocca B, Alimonti A, Forte G, Petrucci F, Pirola C, Senofonte O, Violante N (2003) High-throughput microwave-digestion procedures to monitor neurotoxic elements in body fluids by means of inductively coupled plasma mass spectrometry. Anal Bioanal Chem 377(1):65–70. doi:10.1007/s00216-003-2029-4

    Article  CAS  PubMed  Google Scholar 

  22. Iyengar V, Woittiez J (1988) Trace elements in human clinical specimens: evaluation of literature data to identify reference values. Clin Chem 34:474–481

    CAS  PubMed  Google Scholar 

  23. Case CP, Ellis L, Turner JC, Fairman B (2001) Development of a routine method for the determination of trace metals in whole blood by magnetic sector inductively coupled plasma mass spectrometry with particular relevance to patients with total hip and knee arthroplasty. Clin Chem 47(2):275–280

    CAS  PubMed  Google Scholar 

  24. D'Ilio S, Violante N, Majorani C, Petrucci F (2011) Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: still a challenge? A review. Anal Chim Acta 698(1–2):6–13. doi:10.1016/j.aca.2011.04.052

    Article  PubMed  Google Scholar 

  25. Tokuda E, Okawa E, Watanabe S, S-i O (2014) Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1. Hum Mol Genet 23(5):1271–1285. doi:10.1093/hmg/ddt517

    Article  CAS  PubMed  Google Scholar 

  26. Krachler M, Rossipal E, Micetic-Turk D (1999) Concentrations of trace elements in sera of newborns, young infants, and adults. Biol Trace Elem Res 68(2):121–136. doi:10.1007/bf02784401

    Article  CAS  PubMed  Google Scholar 

  27. Henry JB (1974) Clinical diagnosis and management by laboratory methods, vol 1. Sanders, Philadelphia

    Google Scholar 

  28. Clark NA, Teschke K, Rideout K, Copes R (2007) Trace element levels in adults from the west coast of Canada and associations with age, gender, diet, activities, and levels of other trace elements. Chemosphere 70(1):155–164. doi:10.1016/j.chemosphere.2007.06.038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the NIH Eastern Regional Metabolomics Resource Core (NIH Common Fund Grant 1U24DK097193; PI Susan Sumner) and the NIH Clinical and Translational Sciences Award (NCATS Grant UL1TR00111; PI Marshall Runge). Mr. Glenn Ross is appreciated for providing logistical support for the development of the experimental protocol.

Ethical Statement

This manuscript does not contain samples that were obtained from clinical studies and no personally identifiable patient data are included. Sample collection procedures followed the Helsinki Declaration guidelines regarding informed consent of human volunteers. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Harrington.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 610 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrington, J.M., Young, D.J., Essader, A.S. et al. Analysis of Human Serum and Whole Blood for Mineral Content by ICP-MS and ICP-OES: Development of a Mineralomics Method. Biol Trace Elem Res 160, 132–142 (2014). https://doi.org/10.1007/s12011-014-0033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0033-5

Keywords

Navigation