Skip to main content
Log in

New Developments in Selenium Biochemistry: Selenocysteine Biosynthesis in Eukaryotes and Archaea

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We used comparative genomics and experimental analyses to show that (1) eukaryotes and archaea, which possess the selenocysteine (Sec) protein insertion machinery contain an enzyme, O-phosphoseryl-transfer RNA (tRNA)[Ser]Sec kinase (designated PSTK), which phosphorylates seryl-tRNA[Ser]Sec to form O-phosphoseryl-tRNA[Ser]Sec and (2) the Sec synthase (SecS) in mammals is a pyridoxal phosphate-containing protein previously described as the soluble liver antigen (SLA). SecS uses the product of PSTK, O-phosphoseryl-tRNA[Ser]Sec, and selenophosphate as substrates to generate selenocysteyl-tRNA[Ser]Sec. Sec could be synthesized on tRNA[Ser]Sec from selenide, adenosine triphosphate (ATP), and serine using tRNA[Ser]Sec, seryl-tRNA synthetase, PSTK, selenophosphate synthetase, and SecS. The enzyme that synthesizes monoselenophosphate is a previously identified selenoprotein, selenophosphate synthetase 2 (SPS2), whereas the previously identified mammalian selenophosphate synthetase 1 did not serve this function. Monoselenophosphate also served directly in the reaction replacing ATP, selenide, and SPS2, demonstrating that this compound was the active selenium donor. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that contain selenoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Birringer M, Pilawa S, Flohe L (2002) Trends in selenium biochemistry. Nat Prod Rep 19:693–718

    Article  PubMed  CAS  Google Scholar 

  2. Driscoll DM, Copeland PR (2003) Mechanism and regulation of selenoprotein synthesis. Annu Rev Nutr 23:17–40

    Article  PubMed  CAS  Google Scholar 

  3. Hatfield DL, Carlson BA, Xu XM, Mix H, Gladyshev VN (2006) Selenocysteine incorporation machinery and the role of selenoproteins in development and health. Prog Nucleic Acid Res Mol Biol 81:97–142

    Article  PubMed  CAS  Google Scholar 

  4. Hatfield DL, Berry MJ, Gladyshev VN, Eds (2006) Selenium: its molecular biology and role in human health. Springer

  5. Leinfelder W, Stadtman TC, Bock A (1989) Occurrence in vivo of selenocysteyl-tRNA(SERUCA) in Escherichia coli. Effect of sel mutations. J Biol Chem 264:9720–9723

    PubMed  CAS  Google Scholar 

  6. Lee BJ, Worland PJ, Davis JN, Stadtman TC, Hatfield DL (1989) Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J Biol Chem 264:9724–9727

    PubMed  CAS  Google Scholar 

  7. Wu XQ, Gross HJ (1993) The long extra arms of human tRNA([Ser]Sec) and tRNA(Ser) function as major identify elements for serylation in an orientation-dependent, but not sequence-specific manner. Nucleic Acids Res 21:5589–5594

    Article  PubMed  CAS  Google Scholar 

  8. Ohama T, Yang DC, Hatfield DL (1994) Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm. Arch Biochem Biophys 315:293–301

    Article  PubMed  CAS  Google Scholar 

  9. Hatfield DL, Choi IS, Ohama T, Jung JE, Diamond AM (1994) Selenocysteine tRNA(Ser)sec isoacceptors as central components in selenoprotein biosynthesis in eukaryotes. In: Burk RF (ed) Selenium in biology and human health. Springer, New York, NY, pp 25–44

    Google Scholar 

  10. Forchhammer K, Leinfelder W, Boesmiller K, Veprek B, Bock A (1991) Selenocysteine synthase from Escherichia coli. Nucleotide sequence of the gene (selA) and purification of the protein. J Biol Chem 266:6318–6323

    PubMed  CAS  Google Scholar 

  11. Forchhammer K, Boesmiller K, Bock A (1991) The function of selenocysteine synthase and SELB in the synthesis and incorporation of selenocysteine. Biochimie 73:1481–1486

    Article  PubMed  CAS  Google Scholar 

  12. Forchhammer K, Bock A (1991) Selenocysteine synthase from Escherichia coli. Analysis of the reaction sequence. J Biol Chem 266:6324–6328

    PubMed  CAS  Google Scholar 

  13. Xu XM, Carlson BA, Mix H et al (2007) Biosynthesis of selenocysteine on Its tRNA in Eukaryotes. PLoS Biol 5:96–105

    Article  CAS  Google Scholar 

  14. Glass RS, Singh WP, Jung W, Veres Z, Scholz TD, Stadtman TC (1993) Monoselenophosphate: synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX. Biochemistry 32:12555–12559

    Article  PubMed  CAS  Google Scholar 

  15. Maenpaa PH, Bernfield MR (1970) A specific hepatic transfer RNA for phosphoserine. Proc Natl Acad Sci U S A 67:688–695

    Article  PubMed  CAS  Google Scholar 

  16. Hatfield DL, Portugal FH (1970) Seryl-tRNA in mammalian tissues: chromatographic differences in brain and liver and a specific response to the codon, UGA. Proc Natl Acad Sci U S A 67:1200–1206

    Article  PubMed  CAS  Google Scholar 

  17. Hatfield DL, Diamond AM, Dudock B (1982) Opal suppressor serine tRNAs from bovine liver form phosphoseryl-tRNA. Proc Natl Acad Sci U S A 79:6215–6219

    Article  PubMed  CAS  Google Scholar 

  18. Carlson BA, Xu XM, Kryukov GV et al (2004) Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase. Proc Natl Acad Sci U S A 101:12848–12853

    Article  PubMed  CAS  Google Scholar 

  19. Gelpi C, Sontheimer EJ, Rodriguez-Sanchez JL (1992) Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion. Proc Natl Acad Sci U S A 89:9739–9743

    Article  PubMed  CAS  Google Scholar 

  20. Kernebeck T, Lohse AW, Grotzinger J (2001) A bioinformatical approach suggests the function of the autoimmune hepatitis target antigen soluble liver antigen/liver pancreas. Hepatology 34:230–233

    Article  PubMed  CAS  Google Scholar 

  21. Allmang C, Krol A (2006) Selenoprotein synthesis: UGA does not end the story. Biochimie 88:1561–1571

    Article  PubMed  CAS  Google Scholar 

  22. Small-Howard A, Morozova N, Stoytcheva Z et al (2006) Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol Cell Biol 26:2337–2346

    Article  PubMed  CAS  Google Scholar 

  23. Xu XM, Mix H, Carlson BA et al (2005) Evidence for direct roles of two additional factors, SECp43 and soluble liver antigen, in the selenoprotein synthesis machinery. J Biol Chem 280:41568–41575

    Article  PubMed  CAS  Google Scholar 

  24. Guimaraes MJ, Peterson D, Vicari A et al (1996) Identification of a novel selD homolog from eukaryotes, bacteria, and archaea: is there an autoregulatory mechanism in selenocysteine metabolism? Proc Natl Acad Sci U S A 93:15086–15091

    Article  PubMed  CAS  Google Scholar 

  25. Kim IY, Stadtman TC (1995) Selenophosphate synthetase: detection in extracts of rat tissues by immunoblot assay and partial purification of the enzyme from the archaean Methanococcus vannielii. Proc Natl Acad Sci U S A 92:7710–7713

    Article  PubMed  CAS  Google Scholar 

  26. Kim IY, Guimaraes MJ, Zlotnik A, Bazan JF, Stadtman TC (1997) Fetal mouse selenophosphate synthetase 2 (SPS2): characterization of the cysteine mutant form overproduced in a baculovirus-insect cell system. Proc Natl Acad Sci U S A 94:418–421

    Article  PubMed  CAS  Google Scholar 

  27. Low SC, Harney JW, Berry MJ (1995) Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. J Biol Chem 270:21659–21664

    Article  PubMed  CAS  Google Scholar 

  28. Kim TS, Yu MH, Chung YW et al (1999) Fetal mouse selenophosphate synthetase 2 (SPS2): biological activities of mutant forms in Escherichia coli. Mol Cells 9:422–428

    PubMed  CAS  Google Scholar 

  29. Tamura T, Yamamoto S, Takahata M et al (2004) Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling l-selenocysteine and Sps2 for selenite assimilation. Proc Natl Acad Sci U S A 101:16162–16167

    Article  PubMed  CAS  Google Scholar 

  30. Yuan J, Palioura S, Salazar JC et al (2006) RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc Natl Acad Sci U S A 103:18923–18927

    Article  PubMed  CAS  Google Scholar 

  31. Amberg R, Mizutani T, Wu XQ, Gross HJ (1996) Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec). J Mol Biol 263:8–19

    Article  PubMed  CAS  Google Scholar 

  32. Xu X-M, Carlson BA, Irons R, Mix H, Zhong N, Gladyshev VN, Hatfield DL (2007) Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochem J 404:115–120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, and Center for Cancer Research, by grants GM061603, GM065204, and CA080946 to VNG, grants DK47320 and DK52963 to MJB, and grant CA-41108 (NIH Colon Cancer Prevention Program Project) to RSG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolph L. Hatfield.

Additional information

X.-M. Xu and B. A. Carlson contributed equally to the studies described herein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, XM., Carlson, B.A., Zhang, Y. et al. New Developments in Selenium Biochemistry: Selenocysteine Biosynthesis in Eukaryotes and Archaea. Biol Trace Elem Res 119, 234–241 (2007). https://doi.org/10.1007/s12011-007-8003-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8003-9

Keywords

Navigation