Skip to main content
Log in

Enhancement of the Enzymatic Digestibility and Ethanol Production from Sugarcane Bagasse by Moderate Temperature-Dilute Ammonia Treatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, sugarcane bagasse was pretreated with ammonium hydroxide, and the effectiveness of the pretreatment on enzyme hydrolysis and ethanol production was examined. Bagasse was soaked in ammonium hydroxide and water at a ratio of 1:0.5:8 for 0–4 days at 70 °C. Approximately, 14–45 % lignin, 2–6 % cellulose, and 13–22 % hemicellulose were removed during a 0.5- to 4-day ammonia soaking period. The highest glucan conversion of sugarcane bagasse soaked in dilute ammonia at moderate temperature by cellulase was accomplished at 78 % with 75 % of the theoretical ethanol yield. Under the same conditions, untreated bagasse resulted in a cellulose digestibility of 29 and 27 % of the theoretical ethanol yield. The increased enzymatic digestibility and ethanol yields after dilute ammonia pretreatment was related to a combined effect of the removal of lignin and increase in the surface area of fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lynd, L. R., Cushman, J. H., Nichols, R. J., & Wyman, E. E. (1991). Science, 251, 1318–1323.

    Article  CAS  Google Scholar 

  2. Hsu, T. A., Ladisch, M. R., & Tsao, G. T. (1980). Chemical Technology, 10, 315–319.

    CAS  Google Scholar 

  3. Hamelinck, C. N., van Hooijdonk, G., & Faaij, A. P. C. (2005). Biomass and Bioenergy, 28, 384–410.

    Article  CAS  Google Scholar 

  4. Alvira, P., Tomas-Pejo, E., Ballesteros, M., & Negro, M. (2010). Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  5. Wu, L., Arakane, M., Ike, M., Wada, M., Takai, T., Gau, M., & Tokuyasu, K. (2011). Bioresource Technology, 102, 4793–4799.

    Article  CAS  Google Scholar 

  6. Rabelo, S. C., Filho, R. M., & Costa, A. C. (2009). Applied Biochemistry and Biotechnology, 153, 139–150.

    Article  CAS  Google Scholar 

  7. Aita, G. M., & Kim, M. (2010). Pretreatment technologies for the conversion of lignocellulosic materials to bioethanol. In G. Eggleston (Ed.), Sustainability of the sugar and sugar-ethanol industries (pp. 117–145). Washington, D.C.: ACS.

    Chapter  Google Scholar 

  8. Kim, M., Aita, G., & Day, D. F. (2010). Applied Biochemistry and Biotechnology, 161, 34–40.

    Article  CAS  Google Scholar 

  9. Bals, B. D., Teymouri, F., Campbell, T., Jin, M., & Dale, B. E. (2012). BioEnergy Research, 5, 372–379.

    Article  CAS  Google Scholar 

  10. Kim, T. H., Taylor, F., & Hicks, K. B. (2008). Bioresource Technology, 99, 5694–5702.

    Article  CAS  Google Scholar 

  11. FAOSTAT (2013) Crop production. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor . Accessed June 1, 2012.

  12. NREL (2013). Standard biomass analytical procedures. http://www.nrel.gov/biomass/analytical_procedures.html#lap-009. Accessed November 17, 2009.

  13. Cheng, K., Zhang, J., Ping, W., Ge, J., Zhou, Y., Ling, H., & Xu, J. (2008). Applied Biochemistry and Biotechnology, 151, 43–50.

    Article  CAS  Google Scholar 

  14. Fuentes, L. L. G., Rabelo, S. C., Filho, R. M., & Costa, A. C. (2011). Applied Biochemistry and Biotechnology, 163, 612–625.

    Article  CAS  Google Scholar 

  15. Martin, C., Klinke, H. B., & Thomsen, A. B. (2007). Enzyme and Microbial Technology, 40, 426–432.

    Article  CAS  Google Scholar 

  16. Aita, G. A., Salvi, D. A., & Walker, M. S. (2011). Bioresource Technology, 102, 4444–4448.

    Article  CAS  Google Scholar 

  17. Kim, T. H., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Bioresource Technology, 90, 38–47.

    Article  Google Scholar 

  18. Kim, T. H., & Lee, Y. Y. (2005). Applied Biochemistry and Biotechnology, 121–124, 1119–1131.

    Article  Google Scholar 

  19. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Bioresource Technology, 96, 2026–2032.

    Article  CAS  Google Scholar 

  20. Cao, S., & Aita, G. M. (2013). Bioresource Technology, 131, 357–364.

    Article  CAS  Google Scholar 

  21. Prior, B. A., & Day, D. F. (2008). Applied Biochemistry and Biotechnology, 146, 151–164.

    Article  CAS  Google Scholar 

  22. Kurakake, M., Kisaka, W., Ouchi, K., & Komaki, T. (2001). Applied Biochemistry and Biotechnology, 90, 251–259.

    Article  CAS  Google Scholar 

  23. Kim, T. H., & Lee, Y. Y. (2007). Applied Biochemistry and Biotechnology, 136–140, 81–92.

    Article  Google Scholar 

  24. Ko, J. K., Bak, J. S., Jung, M. W., Lee, H. J., Choi, I. G., Kim, T. H., & Kim, K. H. (2009). Bioresource Technology, 19, 4374–4380.

    Article  Google Scholar 

  25. Fu, Z., & Holtzapple, M. T. (2010). Bioresource Technology, 101, 2825–2836.

    Article  CAS  Google Scholar 

  26. Converse, A. O. (1993). Substrate factors limiting enzymatic hydrolysis. Biotechnology in Agriculture No. 9. In CAB Int’l, Oxford, UK, 93–106.

  27. Mooney, C. A., Mansfield, S. D., Touhy, M. G., & Saddler, J. N. (1998). Bioresource Technology, 64, 113–119.

    Article  CAS  Google Scholar 

  28. Burns, D. S., Ooshima, H., & Converse, A. O. (1989). Applied Biochemistry and Biotechnology, 20–21, 79–94.

    Article  Google Scholar 

  29. Yoon, H. H., Wu, Z. W., & Lee, Y. Y. (1995). Applied Biochemistry and Biotechnology, 51–52, 5–19.

    Article  Google Scholar 

  30. Lee, Y., Chung, C., & Day, D. F. (2009). Bioresource Technology, 100, 935–941.

    Article  CAS  Google Scholar 

  31. Kaar, W. E., Gutierrez, C. V., & Kinoshita, C. M. (1998). Biomass and Bioenergy, 14, 277–287.

    Article  CAS  Google Scholar 

  32. Maiorella, B., Blanch, H. W., & Wilke, C. R. (1983). By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 25, 103–121.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present research was conducted by the research fund of Dankook University in 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misook Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Day, D.F. Enhancement of the Enzymatic Digestibility and Ethanol Production from Sugarcane Bagasse by Moderate Temperature-Dilute Ammonia Treatment. Appl Biochem Biotechnol 171, 1108–1117 (2013). https://doi.org/10.1007/s12010-013-0327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0327-7

Keywords

Navigation