Skip to main content
Log in

Immobilization of Inulinase on Concanavalin A-Attached Super Macroporous Cryogel for Production of High-Fructose Syrup

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, concanavalin A (Con A)-attached poly(ethylene glycol dimethacrylate) [poly(EGDMA)] cryogels were used for immobilization of Aspergillus niger inulinase. For this purposes, the monolithic cryogel column was prepared by radical cryocopolymerization of EGDMA as a monomer and N,N′-methylene bisacrylamide as a crosslinker. Then, Con A was attached by covalent binding onto amino-activated poly(EGDMA) cryogel via glutaraldehyde activation. Characterization of cryogels was performed by FTIR, EDX, and SEM studies. Poly(EGDMA) cryogels were highly porous and pore size was found to be approximately 50–100 μm. Con A-attached poly(EGDMA) cryogels was used in the adsorption of inulinase from aqueous solutions. Adsorption of inulinase on the Con A-attached poly(EGDMA) cryogel was performed in continuous system and the effects of pH, inulinase concentration, and flow rate on adsorption were investigated. The maximum amount of inulinase adsorption was calculated to be 27.85 mg/g cryogel at 1.0 mg/mL inulinase concentration and in acetate buffer at pH 4.0. Immobilized inulinase was effectively used in continuous preparation of high-fructose syrup. Inulin was converted to fructose in a continuous system and released fructose concentration was found to be 0.23 mg/mL at the end of 5 min of hydrolysis. High-fructose content of the syrup was demonstrated by thin layer chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kushi, R. T., Monti, R., & Contiero, J. (2000). Journal of Industrial Microbiology and Biotechnology, 25, 63–69.

    Article  CAS  Google Scholar 

  2. Kango, N., & Jain, S. C. (2011). Food Biotechnology, 25, 165–212.

    Article  CAS  Google Scholar 

  3. Cattorini, S., Marques, M. P. C., Carvalho, F., Chheub, V., Cabral, J. M. S., & Fernandes, P. (2009). Chemical and Biochemical Engineering, 23, 429–434.

    CAS  Google Scholar 

  4. Gong, F., Sheng, J., Chi, Z. M., & Li, J. (2007). Journal Indian Microbiology Biotechnology, 34, 179–185.

    Article  CAS  Google Scholar 

  5. Chi, Z., Chi, Z., Zhang, T., Liu, G., & Yue, L. (2009). Applied Microbiology and Biotechnology, 82, 211–220.

    Article  CAS  Google Scholar 

  6. Sirisansaneeyakul, S., Vanichsriratana, W., Srinophakun, P., & Chisti, Y. (2007). World Journal of Microbiology and Biotechnology, 23, 543–552.

    Article  CAS  Google Scholar 

  7. White, J. S. (2008). American Journal of Clinical Nutrition, 88, 1716–1721.

    Article  Google Scholar 

  8. Sing, P., & Gill, P. K. (2006). Food Technology Biotechnology, 44, 151–162.

    Google Scholar 

  9. Opitz, L., Salaklang, H., Büttner, H., Reichl, U., & Wolff, M. W. (2007). Vaccine, 25, 939–947.

    Article  CAS  Google Scholar 

  10. Fraguas, L. F., Batista-Viera, F., & Carlsson, J. (2004). Journal of Chromatography B, 803, 237–241.

    Article  Google Scholar 

  11. Dainiak, M. B., Galaev, I. Y., & Mattiasson, B. (2006). Journal of Chromatography. A, 1123, 145–150.

    Article  CAS  Google Scholar 

  12. Galaev, I. Y., & Mattiasson, B. (2008). Methods in molecular biology, vol. 421: affinity chromatography: methods and protocols. In M. Zachariou (Ed.), Affinity processing of cell-containing feeds using monolithic macroporous hydrogels, cryogels (pp. 247–255). New Jersey: Humana.

    Google Scholar 

  13. Plieva, F. M., Galaev, I. Y., & Mattiasson, B. (2007). Journal of Separation Science, 30, 1657–1671.

    Article  CAS  Google Scholar 

  14. Silva, F.-R. C., & Santana, C. C. (2000). Applied Biochemistry Biotechnology, 84–86, 1063–1078.

    Article  Google Scholar 

  15. Catana, R., Ferreira, B. S., Cabral, J. M. S., & Fernandes, P. (2005). Food Chemistry, 91, 517–520.

    Article  CAS  Google Scholar 

  16. Gill, P. K., Manhas, R. K., & Singh, P. (2006). Journal of Food Engineering, 76, 369–375.

    Article  CAS  Google Scholar 

  17. Catana, R., Eloy, M., Rocha, J. R., Ferreira, B. S., Cabral, J. M. S., & Fernandes, P. (2007). Food Chemistry, 101, 260–266.

    Article  CAS  Google Scholar 

  18. Singh, R. S., Dhaliwal, R., & Puri, M. (2007). Journal of Industrial Microbiology and Biotechnology, 34, 649–655.

    Article  CAS  Google Scholar 

  19. de Paula, F. C., Cazetta, M. L., Monti, R., & Contiero, J. (2008). Food Chemistry, 111, 691–695.

    Article  Google Scholar 

  20. Elnashar, M. M. M., Danial, E. N., & Awad, G. E. A. (2009). Industrial and Engineering Chemistry Research, 48, 9781–9785.

    Article  CAS  Google Scholar 

  21. Kovaleva, T. A., Holyavka, M. G., & Bogdanova, S. S. (2009). Bulletin of Experimental Biology and Medicine, 148, 39–41.

    Article  CAS  Google Scholar 

  22. Santa, G. L. M., Bernardino, S. M. S. A., Magalhaes, S., Mendes, V., Marques, M. P. C., Fonseca, L. P., et al. (2011). Applied Biochemistry and Biotechnology, 165, 1–12.

    Article  CAS  Google Scholar 

  23. Nguyen, Q. D., Rezessy-Szabo, J. M., Czukor, B., & Hoschke, A. (2011). Process Biochemistry, 46, 298–303.

    Article  CAS  Google Scholar 

  24. Yewale, T., Singhal, R. S., & Vaidya, A. A. (2013). Biocatal Agric Biotechnol, 12, 96–101.

    Google Scholar 

  25. Coghetto, C. C., Schere, R. P., Silva, M. F., Golunski, S., Pergher, S. B. C., de Oliveira, D., et al. (2012). Biocatalysis and Biotransformation, 1, 284–298.

    CAS  Google Scholar 

  26. Richetti, A., Munaretto, C. B., Lerin, L. A., Batistella, L., Oliveira, J. V., de Oliveira, D., et al. (2012). Bioprocess and Biosystems Engineering, 35, 383–388.

    Article  CAS  Google Scholar 

  27. Silva, M. F., Rigo, D., Mossi, V., Dallago, R. M., Henrick, P., Kuhn, G. O., et al. (2013). Food Bioprod Process, 91, 54–59.

    Article  CAS  Google Scholar 

  28. Zemolin, G. P., Gazoni, M., Zabot, G. L., Golunski, S. M., Astolfi, V., Pra, V. D., et al. (2012). Biocatalysis and Biotransformation, 30, 409–416.

    Article  CAS  Google Scholar 

  29. Uygun, M., Uygun, D. A., Özçalışkan, E., Akgöl, S., & Denizli, A. (2012). Journal of Chromatography B, 887–888, 73–78.

    Article  Google Scholar 

  30. Elmas, B., Tuncel, M., Yalçın, G., Şenel, S., & Tuncel, A. (2005). Colloid Surface A, 269, 125–134.

    Article  CAS  Google Scholar 

  31. Çakmak, S., Gümüşderelioğlu, M., & Denizli, A. (2009). Reactive and Functional Polymers, 69, 586–593.

    Article  Google Scholar 

  32. Berthelot, M. P. E. (1859). Violet d’aniline Repert De Chimie Applied, 1, 282–284.

    Google Scholar 

  33. Bernfeld, P. (1955). Amylases, α and β Method Enzymol, 1, 149–158.

    Article  CAS  Google Scholar 

  34. Kong, J., & Yu, S. (2007). Acta Biochimica et Biophysica Sinica, 39, 549–559.

    Article  CAS  Google Scholar 

  35. Babac, C., Yavuz, H., Galaev, I. Y., Pişkin, E., & Denizli, A. (2006). Reactive and Functional Polymers, 66, 1263–1271.

    Article  CAS  Google Scholar 

  36. Place, A. R., & Powers, D. A. (1979). Proceedings of the National Academy of Sciences, 76, 2354–2358.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Aktaş Uygun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altunbaş, C., Uygun, M., Uygun, D.A. et al. Immobilization of Inulinase on Concanavalin A-Attached Super Macroporous Cryogel for Production of High-Fructose Syrup. Appl Biochem Biotechnol 170, 1909–1921 (2013). https://doi.org/10.1007/s12010-013-0322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0322-z

Keywords

Navigation