Skip to main content
Log in

Efficient Non-sterilized Fermentation of Biomass-Derived Xylose to Lactic Acid by a Thermotolerant Bacillus coagulans NL01

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylose is the major pentose and the second most abundant sugar in lignocellulosic feedstock. Its efficient utilization is regarded as a technical barrier to the commercial production of bulk chemicals from lignocellulosic biomass. This work aimed at evaluating the lactic acid production from the biomass-derived xylose using non-sterilized fermentation by Bacillus coagulans NL01. A maximum lactic acid concentration of about 75 g/L was achieved from xylose of 100 g/L after 72 h batch fermentation. Acetic acid and levulinic acid were identified as important inhibitors in xylose fermentation, which markedly reduced lactic acid productivity at 15 and 1.0 g/L, respectively. But low concentrations of formic acid (<2 g/L) exerted a stimulating effect on the lactic acid production. When prehydrolysate containing total 25.45 g/L monosaccharide was fermented with B. coagulans NL01, the same preference for glucose, xylose, and arabinose was observed and18.2 g/L lactic acid was obtained after 48 h fermentation. These results proved that B. coagulans NL01 was potentially well-suited for producing lactic acid from underutilized xylose-rich prehydrolysates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vijayakumar, J., Aravindan, R., & Viruthagiric, T. (2008). Recent trends in the production, purification and application of lactic acid. Chemical and Biochemical Engineering Quarterly, 22, 245–264.

    CAS  Google Scholar 

  2. Datta, R., & Henry, M. (2006). Lactic acid: recent advances in products, processes and technologies—a review. Journal of Chemical Technology and Biotechnology, 81, 1119–1129.

    Article  CAS  Google Scholar 

  3. Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnology Advances, 30, 321–328.

    Article  CAS  Google Scholar 

  4. Jem, K. J., van der Pol, J. F., & de Vos, S. (2010). Microbial lactic acid, its polymer poly (lactic acid), and their industrial applications. Microbiology Monographs, 14, 323–346.

    Article  Google Scholar 

  5. Okano, K., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2010). Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Applied Microbiology and Biotechnology, 85, 413–423.

    Article  CAS  Google Scholar 

  6. Gao, C., Ma, C. Q., & Xu, P. (2011). Biotechnological routes based on lactic acid production from biomass. Biotechnology Advances, 29, 930–939.

    Article  CAS  Google Scholar 

  7. Yadav, A. K., Chaudhari, A. B., & Kothar, R. M. (2011). Bioconversion of renewable resources into lactic acid: an industrial view. Critical Reviews in Biotechnology, 31, 1–19.

    Article  CAS  Google Scholar 

  8. Patel, M. A., Ou, M. S., Ingram, L. O., & Shanmugam, K. T. (2005). Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotechnolgy Progress, 21, 1453–1460.

    Article  CAS  Google Scholar 

  9. Abdel-Rahman, M. A., Tashiroc, Y., & Sonomoto, K. (2011). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. Journal of Biotechnology, 156, 286–301.

    Article  CAS  Google Scholar 

  10. Chang, T. H., & Yao, S. (2011). Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Applied Microbiology and Biotechnology, 92, 13–27.

    Article  CAS  Google Scholar 

  11. Chandel, A. K., Chandrasekhar, G., Radhika, K., Ravinder, R., & Ravindra, P. (2011). Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnology and Molecular Biology Review, 6, 8–20.

    CAS  Google Scholar 

  12. Girio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Lukasik, R. (2010). Hemicelluloses for fuel ethanol: a review. Bioresource Technology, 101, 4775–4800.

    Article  CAS  Google Scholar 

  13. Saito, K., Hasa, Y., & Abe, H. (2012). Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. Journal of Bioscience and Bioengineering, 114, 166–169.

    Article  CAS  Google Scholar 

  14. John, R. P., Nampoothiri, K. M., & Pandey, A. (2007). Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Applied Microbiology and Biotechnology, 74, 524–534.

    Article  CAS  Google Scholar 

  15. Ohara, H., Owaki, M., & Sonomoto, K. (2006). Xylooligosaccharide fermentation with Leuconostoc lactis. Journal of Bioscience and Bioengineering, 101, 415–420.

    Article  CAS  Google Scholar 

  16. Moldes, A. B., Torrado, A., Converti, A., & Dominguez, J. M. (2006). Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus. Applied Biochemistry and Biotechnology, 135, 219–227.

    Article  CAS  Google Scholar 

  17. Patel, M., Ou, M., Ingram, L. O., & Shanmugam, K. T. (2004). Fermentation of sugar cane bagasse hemicellulose hydrolysate to l (+)-lactic acid by a thermotolerant acidophilic Bacillus sp. Biotechnology Letters, 26, 865–868.

    Article  CAS  Google Scholar 

  18. Wang, L., Zhao, B., Liu, B., Ma, C. Q., Su, F., Hua, D. L., et al. (2010). Efficient production of l-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresource Technology, 101, 7908–7915.

    Article  CAS  Google Scholar 

  19. Bischoff, K. M., Liu, S. Q., Hughes, S. R., & Rich, J. O. (2010). Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans. Biotechnology Letters, 32, 823–828.

    Article  CAS  Google Scholar 

  20. Patel, M., Ou, M., Harbrucker, R., Aldrich, H. C., Buszko, M. L., Ingram, L. O., et al. (2006). Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Applied and Environment Microbiology, 72, 3228–3235.

    Article  CAS  Google Scholar 

  21. Maas, R. H. W., Bakker, R. R., Jansen, M. L. A., Visser, D., de Jong, E., Eggink, G., et al. (2008). Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate. Applied Microbiology and Biotechnology, 78, 751–758.

    Article  CAS  Google Scholar 

  22. Ou, M. S., Mohammed, N., Ingram, L. O., & Shanmugam, K. T. (2009). Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Applied Biochemistry and Biotechnology, 155, 379–385.

    Article  CAS  Google Scholar 

  23. Budhavaram, N. K., & Fan, Z. L. (2009). Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains. Bioresource Technology, 100, 5966–5972.

    Article  CAS  Google Scholar 

  24. Walton, S. L., Biscoff, K. M., van Heiningen, A. R. P., & van Walsum, G. P. (2010). Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9. Journal of Industrial Microbiology and Biotechnology, 37, 823–830.

    Article  CAS  Google Scholar 

  25. Palmqvist, E., & Hahn-Hagerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 74, 25–33.

    Article  CAS  Google Scholar 

  26. Zhu, J. J., Yong, Q., Xu, Y., & Yu, S. Y. (2011). Detoxification of corn stover prehydrolyzate by trialkylamine extraction to improve the ethanol production with Pichia stipitis CBS 5776. Bioresource Technology, 102, 1663–1668.

    Article  CAS  Google Scholar 

  27. Kovács, Á. T., van Hartskamp, M., Kuipers, O. P., & van Kranenburg, R. (2010). Genetic tool development for a new host for biotechnology, the thermotolerant bacterium Bacillus coagulans. Applied and Environment Microbiology, 76, 4085–4088.

    Article  Google Scholar 

  28. Qin, J. Y., Zhao, B., Wang, X. W., Wang, L. M., Yu, B., Ma, Y. H., et al. (2009). Non-sterilized fermentative production of polymer-grade l-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2–6. PLoS One, 4, e4359.

    Article  Google Scholar 

  29. Ou, M. S., Ingram, L. O., & Shanmugam, K. T. (2011). l(+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. Journal of Industrial Microbiology and Biotechnology, 38, 599–605.

    Article  CAS  Google Scholar 

  30. Kothari, U. D., & Lee, Y. Y. (2011). Inhibition effects of dilute-acid prehydrolysate of corn stover on enzymatic hydrolysis of Solka Floc. Applied Biochemistry and Biotechnology, 165, 391–1405.

    Article  Google Scholar 

  31. Cara, C., Ruiz, E., Oliva, G. M., Sáez, F., & Castro, E. (2008). Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresource Technology, 99, 1869–1876.

    Article  CAS  Google Scholar 

  32. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., et al. (1998). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology, 24, 151–159.

    Article  Google Scholar 

  33. Huang, H., Guo, X., Li, D., Liu, M., Wu, J., & Ren, H. (2011). Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids. Bioresource Technology, 102, 7486–7493.

    Article  CAS  Google Scholar 

  34. Bellido, C., Bolado, S., Coca, M., Lucas, S., Gonzalez-Benito, G., & Garcia-Cubero, M. T. (2011). Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresource Technology, 102, 10858–10874.

    Article  Google Scholar 

  35. Okano, K., Yoshida, S., Yamda, R., Tanaka, T., Ogino, C., Fukuda, H., et al. (2009). Homo d-lactic acid fermentation from xylose by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in l-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Applied and Environment Microbiology, 24, 7858–7861.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31070513) and Excellent Youth Foundation of Jiangsu Province of China (BK2012038). The authors are also grateful to the Major Program of the Natural Science Foundation of Jiangsu Higher Education of China (10KJA22019) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for partial funding of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Ouyang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, J., Cai, C., Chen, H. et al. Efficient Non-sterilized Fermentation of Biomass-Derived Xylose to Lactic Acid by a Thermotolerant Bacillus coagulans NL01. Appl Biochem Biotechnol 168, 2387–2397 (2012). https://doi.org/10.1007/s12010-012-9944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9944-9

Keywords

Navigation