Skip to main content
Log in

The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries

  • Session 2
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of varying initial particle sizes on enzymatic hydrolysis rates and rheological properties of sawdust slurries is investigated. Slurries with four particle size ranges (33 µm<x≤75 µm, 150 µm<x≤180 µm, 295 µm<x≤425 µm, and 590 µm<x≤850 µm) were subjected to enzymatic hydrolysis using an enzyme dosage of 15 filter paper units per gram of cellulose at 50°C and 250 rpm in shaker flasks. At lower initial particle sizes, higher enzymatic reaction rates and conversions of cellulose to glucose were observed. After 72 h 50 and 55% more glucose was produced from the smallest size particles than the largest size ones, for initial solids concentration of 10 and 13% (w/w), respectively. The effect of initial particle size on viscosity over a range of shear was also investigated. For equivalent initial solids concentration, smaller particle sizes result in lower viscosities such that at a concentration of 10% (w/w), the viscosity decreased from 3000 cP for 150 µm<x≤180 µm particle size slurries to 61.4 cP for 33 µm<x≤75 µm particle size slurries. Results indicate particle size reduction may provide a means for reducing the long residence time required for the enzymatic hydrolysis step in the conversion of biomass to ethanol. Furthermore, the corresponding reduction in viscosity may allow for higher solids loading and reduced reactor sizes during large-scale processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cristobal, C., Ruiz, E., Ballesteros, I., Negro, M. J., and Castro, E. (2006), Process Biochem. 41, 423–429.

    Article  CAS  Google Scholar 

  2. McCloy, B. W. and O’Connor, D. V. (1999), Wood ethanol opportunities and barriers. Report for Forest Sector Table.

  3. Robert, H. F. and McKeever, D. B. (2004), Recovering wood for reuse and recycling: a United States perspective. Management of Recovered Wood Recycling, Bioenergy and Other Options, Thessaloniki, European COST E31 Conference.

  4. Brownell, H. H. and Saddler, J. N. (1987), Biotechnology and Bioengineering 29(2), 228–235; Mosier, N., et al. (2005), Bioresource Technology 96, 673–686.

    Article  CAS  Google Scholar 

  5. Hans, E. G. (1991), Bioresource Techonol. 36, 77–82.

    Article  Google Scholar 

  6. Ian, F. C., Saddler, J. N., Shawn, D. M. (2004), Biotechnol. Bioeng. 85(4), 413–421.

    Article  CAS  Google Scholar 

  7. Charles E. W., Lee, Y. Y., Dale, B. E., et al. (2005), 2nd World Congress on Industrial Biotechnology and Bioprocessing.

  8. Gusakov, A. V. and Sinitsyn, A. P. (1985), Enzyme Microb. Technol. 7, 346–352.

    Article  CAS  Google Scholar 

  9. Gonzalez G., Caminal, G., de Mas, C., and Santin, J. L. (1989), Biotechnol. Bioeng. 34, 242–251.

    Article  CAS  Google Scholar 

  10. Yerkes D. W., Zhang, H., Berson, E. R., Loha, V., Modi, S., and Tanner, R. D. (1995), Indina Chem. Eng. 37, 3, 80–89.

    CAS  Google Scholar 

  11. Kiran, L. K., Rydholm, E. C., and McMillan, J. D. (2004), Biotechnol. Prog. 20, 698–705.

    Article  CAS  Google Scholar 

  12. Kamyar, M. (2005), Biochem. Eng. J. 24, 217–223.

    Article  CAS  Google Scholar 

  13. Walker, L. P. and Wilson, D. B. (1991), Bioresour. Technol. 36, 3–14.

    Article  CAS  Google Scholar 

  14. Abasaeed, A. E. and Lee, Y. Y. (1991), Bioresour. Technol. 35, 15–21.

    Article  CAS  Google Scholar 

  15. Peters, L. E., Walker, L. P., Wilson, D. B., and Irwin, D. C. (1991), Bioresource Technol. 35, 313–319.

    Article  CAS  Google Scholar 

  16. Coughlan, M. P. (1992), Bioresour. Technol. 39, 107–115.

    Article  CAS  Google Scholar 

  17. Perez, L. L., Teymouri, F., Alizadeh, H., and Dale, B. E. (2005), Appl. Biochem. Biotechnol. 121–124, 1081–1099.

    Article  Google Scholar 

  18. Kim, S. and Hlotzapple, M. T. (2006), Bioresour. Technol. 97, 583–591.

    Article  CAS  Google Scholar 

  19. David, J. G. and John, N. S. (1996), Biotechnol. Bioeng. 51, 375–383.

    Google Scholar 

  20. Converse, A. O., Ooshima, H., Burns, D. S. (1990), Appl. Biochem. Biotechnol. 24–25, 67–73.

    Article  Google Scholar 

  21. Wald, S., Wilke, C. R., and Blanch, H. W. (1984), Biotechnol. Bioeng. 26, 221–230.

    Article  CAS  Google Scholar 

  22. Palonen, H., Tjerneld, Z. G., Tenkanen, M. (2004), J. Biotechnol. 107, 65–72.

    Article  CAS  Google Scholar 

  23. Eriksson, T., Karlsson, J., and Tjerneld, F. (2002), Appl. Biochem. Biotechnol. 101, 41–59.

    Article  CAS  Google Scholar 

  24. Millett, M. A., Baker, A. J., and Scatter, L. D. (1976), Biotechnol. Bioeng. Symp. No. 6, 125–153.

  25. Fan, L. T., Lee, Y., and Gharpuray, M. M. (1982), Adv. Biochem. Eng. 23, 157–187.

    CAS  Google Scholar 

  26. Ebeling, T., Paillet, M., Borsali, R., et al. (1999), Am. Chem. Soc. 15(19), 6123–6126.

    CAS  Google Scholar 

  27. Oldshue, J. Y. (1983), Fluid Mixing Technology, McGraw Hill, New York, NY.

    Google Scholar 

  28. Hodge, D., Karim, M. N., Farmer, J., Schell, D. J., and McMillan, J. D. (2005), 27th Symposium on Biotechnology for Fuels and Chemicals, Denver, CO, 1–4 May.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Eric Berson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasari, R.K., Eric Berson, R. The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Appl Biochem Biotechnol 137, 289–299 (2007). https://doi.org/10.1007/s12010-007-9059-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-9059-x

Index Entries

Navigation