Skip to main content
Log in

Milk Renneting: Study of Process Factor Influences by FT-NIR Spectroscopy and Chemometrics

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The dairy industry is continuously developing new strategies to obtain healthier dairy products preserving expected properties. However, when modifying a food process, the reassessment of each parameters and their interaction should be considered as highly influencing the final quality. Among others, rennet process features are fundamental for both sensory properties and typical characteristics of a cheese. In this contest, the research addresses the development of a FT-NIR spectroscopic method, coupled with chemometrics, for the study of the effect of process variables on milk renneting. The effects of temperature (30 °C, 35 °C, 40 °C), milk fat concentration (0.1, 2.55, 5 g/100 mL), and pH (6.3, 6.5, 6.7) were investigated by means of a Box-Behnken experimental design. FT-NIR data collected along the 17 trials were explored by interval-PCA (i-PCA) and ANOVA-simultaneous component analysis (ASCA). i-PCA revealed differences in the occurrence and trends of coagulation phases, related to the three considered factors. ASCA allowed the characterization of renneting evolution and the assessment of the factor role, demonstrating that main and interaction effects are significant for the process progress. The proposed approach demonstrated that i-PCA and ASCA on FT-NIR data, highlighting the effects of the operating factors, allow a rapid and accurate analysis of process modifications in cheese manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aernouts, B., Van Beers, R., Watté, R., Huybrechts, T., Lammertyn, J., & Saeys, W. (2015). Visible and near-infrared bulk optical properties of raw milk. Journal of Dairy Science, 98(10), 6727–6738.

    Article  CAS  PubMed  Google Scholar 

  • Brandao, M. C. P., Carmo, A., Bell, M. J. V., & Anjos, V. C. (2010). Characterization of milk by infrared spectroscopy. Revista do Instituto de Laticicinos “Cândido Tostes”, 373(65), 30–33.

    Google Scholar 

  • Bratchell, N. (1989). Multivariate response surface modelling by principal component analysis. Journal of Chemometrics, 3(4), 579–588.

    Article  CAS  Google Scholar 

  • Cabassi, G., Profaizer, M., Marinoni, L., Rizzi, N., & Cattaneo, T. M. (2013). Estimation of fat globule size distribution in milk using an inverse light scattering model in the near infrared region. Journal of Near Infrared Spectroscopy, 21(5), 359–373.

    Article  CAS  Google Scholar 

  • Cama-Moncunill, R., Markiewicz-Keszycka, M., Dixit, Y., Cama-Moncunill, X., Casado-Gavalda, M. P., Cullen, P. J., & Sullivan, C. (2016). Multipoint NIR spectroscopy for gross composition analysis of powdered infant formula under various motion conditions. Talanta, 154, 423–430.

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo, T. M., Giardina, C., Sinelli, N., Riva, M., & Giangiacomo, R. (2005). Application of FT-NIR and FT-IR spectroscopy to study the shelf-life of Crescenza cheese. International Dairy Journal, 15(6-9), 693–700.

    Article  CAS  Google Scholar 

  • Cattaneo, T. M., Cabassi, G., Profaizer, M., & Giangiacomo, R. (2009). Contribution of light scattering to near infrared absorption in milk. Journal of Near Infrared Spectroscopy, 17(6), 337–343.

    Article  CAS  Google Scholar 

  • Cipolat-Gotet, C., Cecchinato, A., De Marchi, M., Penasa, M., & Bittante, G. (2012). Comparison between mechanical and near-infrared methods for assessing coagulation properties of bovine milk. Journal of Dairy Science, 95(11), 6806–6819.

    Article  CAS  PubMed  Google Scholar 

  • Čurda, L., & Kukačková, O. (2004). NIR spectroscopy: a useful tool for rapid monitoring of processed cheeses manufacture. Journal of Food Engineering, 61(4), 557–560.

    Article  Google Scholar 

  • De Luca, S., De Filippis, M., Bucci, R., Magrì, A. D., Magrì, A. L., & Marini, F. (2016). Characterization of the effects of different roasting conditions on coffee samples of different geographical origins by HPLC-DAD, NIR and chemometrics. Microchemical Journal, 129, 348–361.

    Article  CAS  Google Scholar 

  • Downey, G., Sheehan, E., Delahunty, C., O’Callaghan, D., Guinee, T., & Howard, V. (2005). Prediction of maturity and sensory attributes of Cheddar cheese using near-infrared spectroscopy. International Dairy Journal, 15(6-9), 701–709.

    Article  CAS  Google Scholar 

  • Engel, J., Blanchet, L., Bloemen, B., Van den Heuvel, L. P., Engelke, U. H. F., Wevers, R. A., & Buydens, L. M. C. (2015). Regularized MANOVA (rMANOVA) in untargeted metabolomics. Analytica Chimica Acta, 899, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Grassi, S., Alamprese, C., Bono, V., Casiraghi, E., & Amigo, J. M. (2014). Modelling milk lactic acid fermentation using multivariate curve resolution-alternating least squares (MCR-ALS). Food and Bioprocess Technology, 7(6), 1819–1829.

    Article  CAS  Google Scholar 

  • Grassi, S., Lyndgaard, C. B., Rasmussen, M. A., & Amigo, J. M. (2017). Interval ANOVA simultaneous component analysis (i-ASCA) applied to spectroscopic data to study the effect of fundamental fermentation variables in beer fermentation metabolites. Chemometrics and Intelligent Laboratory Systems, 163, 86–93.

    Article  CAS  Google Scholar 

  • Harrington, P. d. B., Vieira, N. E., Chen, P., Espinoza, J., Nien, J. K., Romero, R., & Yergey, A. L. (2005). Analysis of variance–principal component analysis: A soft tool for proteomic discovery. Analytica chimica acta, 544(1–2),118–127.

  • Henihan, L. E., O’Donnell, C. P., Esquerre, C., Murphy, E. G., & O’Callaghan, D. J. (2018). Quality assurance of model infant milk formula using a front-face fluorescence process analytical tool. Food and Bioprocess Technology, 11(7), 1402–1411.

    Article  CAS  Google Scholar 

  • Holroyd, S. E. (2013). The use of near infrared spectroscopy on milk and milk products. Journal of Near Infrared Spectroscopy, 21(5), 311–322.

    Article  CAS  Google Scholar 

  • Imram, N. (1999). Visual texture perception in formulated chilled dairy desserts. British Food Journal, 101(1), 22–31.

    Article  Google Scholar 

  • Jackson, J. (1980). Principal components and factor analysis: part I—principal components. Journal of Quality Technology, 12(4), 201–213.

    Article  Google Scholar 

  • Jansen, J. J., Hoefsloot, H. C. J., van der Greef, J., Timmerman, M. E., Westerhuis, J. A., & Smilde, A. K. (2005). ASCA: analysis of multivariate data obtained from an experimental design. Journal of Chemometrics, 19(9), 469–481.

    Article  CAS  Google Scholar 

  • Johnson, M. E., Chen, C. M., & Jaeggi, J. J. (2001). Effect of rennet coagulation time on composition, yield, and quality of reduced-fat cheddar cheese. Journal of Dairy Science, 84(5), 1027–1033.

    Article  CAS  PubMed  Google Scholar 

  • Kasemsumran, S., Thanapase, W., & Kiatsoonthon, A. (2007). Feasibility of near-infrared spectroscopy to detect and to quantify adulterants in cow milk. Analytical Sciences, 23(7), 907–910.

    Article  CAS  PubMed  Google Scholar 

  • Kirk, R. E. (1982). Experimental design. Hoboken: Wiley.

    Google Scholar 

  • Kondakci, T., & Zhou, W. (2017). Recent applications of advanced control techniques in food industry. Food and Bioprocess Technology, 10(3), 522–542.

    Article  CAS  Google Scholar 

  • Laporte, M. F., Martel, R., & Paquin, P. (1998). The near-infrared optic probe for monitoring rennet coagulation in cow’s milk. International Dairy Journal, 8(7), 659–666.

    Article  CAS  Google Scholar 

  • Logan, A., Day, L., Pin, A., Auldist, M., Leis, A., Puvanenthiran, A., & Augustin, M. A. (2014). Interactive effects of milk fat globule and casein micelle size on the renneting properties of milk. Food and Bioprocess Technology, 7(11), 3175–3185.

    Article  CAS  Google Scholar 

  • Marini, F., de Beer, D., Joubert, E., & Walczak, B. (2015). Analysis of variance of designed chromatographic data sets: The analysis of variance-target projection approach. Journal of Chromatography A, 1405, 94–102.

    Article  CAS  PubMed  Google Scholar 

  • Martin, B., Chamba, J. F., Coulon, J. B., & Perreard, E. (1997). Effect of milk chemical composition and clotting characteristics on chemical and sensory properties of Reblochon de Savoie cheese. Journal of Dairy Research, 64(1), 157–162.

    Article  CAS  Google Scholar 

  • Nelson, D. L. (2018). Introduction to spectroscopy. In A. S. Franca & L. Nollet (Eds.), Spectroscopic methods in food analysis (pp. 3–33). Boca Raton: CRC Press.

    Google Scholar 

  • Núñez-Sánchez, N., Martínez-Marín, A. L., Polvillo, O., Fernández-Cabanás, V. M., Carrizosa, J., Urrutia, B., & Serradilla, J. M. (2016). Near infrared spectroscopy (NIRS) for the determination of the milk fat fatty acid profile of goats. Food Chemistry, 190, 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Sbodio, O. A., Tercero, E. J., Coutaz, R., & Martinez, E. (2002). Optimizing processing conditions for milk coagulation using the hot wire method and response surface methodology. Journal of Food Science, 67(3), 1097–1102.

    Article  CAS  Google Scholar 

  • Shao, Y., & He, Y. (2009). Measurement of soluble solids content and pH of yogurt using visible/near infrared spectroscopy and chemometrics. Food and Bioprocess Technology, 2(2), 229–233.

    Article  CAS  Google Scholar 

  • Smilde, A. K., Jansen, J. J., Hoefsloot, H. C. J., Lamers, R. J. A. N., van der Greef, J., & Timmerman, M. E. (2005). ANOVA-simultaneous component analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics, 21(13), 3043–3048.

    Article  CAS  PubMed  Google Scholar 

  • Ståhle, L., & Wold, S. (1990). Multivariate analysis of variance (MANOVA). Chemometrics and Intelligent Laboratory Systems, 9(2), 127–141.

    Article  Google Scholar 

  • Subramanian, A., Prabhakar, V., & Rodriguez-Saona, L. (2011). Analytical methods: Infrared spectroscopy in dairy analysis. In Encyclopedia of dairy sciences (2nd ed., pp. 115–124). Cambridge: Academic Press.

    Chapter  Google Scholar 

  • Tsenkova, R., Atanassova, S., Itoh, K., Ozaki, Y., & Toyoda, K. (2000). Near infrared spectroscopy for biomonitoring: cow milk composition measurement in a spectral region from 1,100 to 2,400 nanometers. Journal of Animal Science, 78(3), 515–522.

    Article  CAS  PubMed  Google Scholar 

  • Ullah, I., & Jones, B. (2015). Regularised manova for high-dimensional data. Australian & New Zealand Journal of Statistics, 57(3), 377–389.

    Article  Google Scholar 

  • Visentin, G., McDermott, A., McParland, S., Berry, D. P., Kenny, O. A., Brodkorb, A., Fenelon, M. A., & De Marchi, M. (2015). Prediction of bovine milk technological traits from mid-infrared spectroscopy analysis in dairy cows. Journal of Dairy Science, 98(9), 6620–6629.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Ding, W., Kou, L., Li, L., Wang, C., & Jurick, W. M. (2015). A non-destructive method to assess freshness of raw bovine milk using FT-NIR spectroscopy. Journal of Food Science and Technology, 52(8), 5305–5310.

    Article  CAS  PubMed  Google Scholar 

  • Wittrup, C., & Nørgaard, L. (1998). Rapid near infrared spectroscopic screening of chemical parameters in semi-hard cheese using chemometrics. Journal of Dairy Science, 81(7), 1803–1809.

    Article  CAS  Google Scholar 

  • Woodcock, T., Fagan, C. C., O’Donnell, C. P., & Downey, G. (2008). Application of near and mid-infrared spectroscopy to determine cheese quality and authenticity. Food and Bioprocess Technology, 1(2), 117–129.

    Article  Google Scholar 

  • Workman, J., & Weyer, L. (2007). Practical guide to interpretive near-infrared spectroscopy. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Zoon, P., van Vliet, T., & Walstra, P. (1988). Rheological properties of rennet-induced skim milk gels. 2. The effect of temperature. Netherlands Milk and Dairy Journal, 42, 271–294.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Grassi.

Ethics declarations

Conflict of Interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strani, L., Grassi, S., Casiraghi, E. et al. Milk Renneting: Study of Process Factor Influences by FT-NIR Spectroscopy and Chemometrics. Food Bioprocess Technol 12, 954–963 (2019). https://doi.org/10.1007/s11947-019-02266-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02266-2

Keywords

Navigation