Skip to main content
Log in

Smooth muscle function and dysfunction in gallbladder disease

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

The gallbladder epithelium and smooth muscle layer are exposed to concentrated biliary solutes, including cholesterol and potentially toxic hydrophobic bile salts, which are able to influence muscle contraction. Physiologically, gallbladder tone is regulated by spontaneous muscle activity, hormones, and neurotransmitters released into the muscle from intrinsic neurons and extrinsic sympathetic nerves. Methods to explore gallbladder smooth muscle function in vitro include cholecystokinin (CCK) receptorbinding studies and contractility studies. In human and animal models, studies have focused on cellular and molecular events in health and disease, and in vitro findings mirror in vivo events. The interplay between contraction and relaxation of the gallbladder muscularis leads in vivo to appropriate gallbladder emptying and refilling during fasting and postprandially. Defective smooth muscle contractility and/or relaxation are found in cholesterol stone-containing gallbladders, featuring a type of gallbladder leiomyopathy; defects of CCKA receptors and signal transduction may coexist with abnormal responses to oxidative stress and inflammatory mediators. Abnormal smooth musculature contractility, impaired gallbladder motility, and increased stasis are key factors in the pathogenesis of cholesterol gallstones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Apstein MD, Carey MC: Pathogenesis of cholesterol gallstones: a parsimonious hypothesis. Eur J Clin Invest 1996, 26:343–352.

    Article  PubMed  CAS  Google Scholar 

  2. Hyogo H, Tazuma S, Cohen DE: Cholesterol gallstones. Curr Opin Gastroenterol 2002, 18:366–371.

    Article  PubMed  CAS  Google Scholar 

  3. Portincasa P, Moschetta A, van Erpecum KJ, et al.: Pathways of cholesterol crystallization in model bile and native bile. Dig Liver Dis 2003, 35:118–126.

    Article  PubMed  CAS  Google Scholar 

  4. Kalinichenko VV, Zhou Y, Bhattacharyya D, et al.: Haploinsufficiency of the mouse Forkhead Box f1 gene causes defects in gall bladder development. J Biol Chem 2002, 277:12369–12374.

    Article  PubMed  CAS  Google Scholar 

  5. Ruegg JC: Smooth muscle. In Comprehensive Human Physiology. Edited by Greger R, Windhorst U. Berlin Heidelberg: Springer-Verlag; 1996:895–910.

    Google Scholar 

  6. Weisbrodt NW, Moody FG: Gallbladder contractility [letter]. Gastroenterology 1992, 102:741–742.

    PubMed  CAS  Google Scholar 

  7. Sutherland SD: The neurons of the gallbladder and gut. Anat 1967, 101:701–709.

    CAS  Google Scholar 

  8. Greaves RSH, O’Donnell LDJ: Gallbladder motility and gallstones. In Gallbladder and Biliary Tract Diseases. Edited by Afdhal NH. New York: Marcel Decker; 2000:275–295.

    Google Scholar 

  9. Mawe GM, Talmage EK, Cornbrooks EB, et al.: Innervation of the gallbladder: structure, neurochemical coding, and physiological properties of guinea pig gallbladder ganglia. Microsc Res Tech 1997, 39:1–13. A physiologic study in the guinea pig investigating the distribution of ganglia in the gallbladder, the presence of several neurotransmitters, and their potential interaction.

    Article  PubMed  CAS  Google Scholar 

  10. Otsuki M: Pathophysiological role of cholecystokinin in humans. J Gastroenterol Hepatol 2000, 15(Suppl):D71-D83.

    Article  PubMed  CAS  Google Scholar 

  11. Beglinger C, Hildebrand P, Adler G, et al.: Postprandial control of gallbladder contraction and exocrine pancreatic secretion in man. Eur J Clin Invest 1992, 22:827–834.

    Article  PubMed  CAS  Google Scholar 

  12. Maselli MA, Piepoli AL, Pezzolla F, et al.: Effect of three nonpeptide cholecystokinin antagonists on human isolated gallbladder. Dig Dis Sci 2001, 46:2773–2778.

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki S, Takiguchi S, Sato N, et al.: Importance of CCK-A receptor for gallbladder contraction and pancreatic secretion: a study in CCK-A receptor knockout mice. Jpn J Physiol 2001, 51:585–590. Through the use of a CCKA receptor-deficient mouse mutant generated by gene targeting in embryonic stem cells, it was found that CCK-8 significantly increased amylase and bile acid outputs in CCKA receptor (+/+) and (+/-) mice, whereas no response was observed in (-/-) mice. The CCKA receptor is important for pancreatic secretion and gallbladder contraction.

    Article  PubMed  CAS  Google Scholar 

  14. Hanyu N, Dodds WJ, Layman RD, et al.: Mechanism of cholecystokinin-induced contraction of the opossum gallbladder. Gastroenterology 1990, 98:1299–1306.

    PubMed  CAS  Google Scholar 

  15. Corp ES, McQuade J, Moran TH, Smith GP: Characterization of type A and type B CCK receptor binding sites in rat vagus nerve. Brain Res 1993, 623:161–166.

    Article  PubMed  CAS  Google Scholar 

  16. Morton MF, Welsh NJ, Tavares IA, Shankley NP: Pharmacological characterization of cholecystokinin receptors mediating contraction of human gallbladder and ascending colon. Regul Pept 2002, 105:59–64.

    Article  PubMed  CAS  Google Scholar 

  17. Schnefel S, Profrock A, Hinsch KD, Schulz I: Cholecystokinin activates Gi1-, Gi2-, Gi3- and several Gs-proteins in rat pancreatic acinar cells. Biochem J 1990, 269:483–488.

    PubMed  CAS  Google Scholar 

  18. Portincasa P, vanBerge-Henegouwen GP: Gallbladder smooth muscle function and its dysfunction in cholesterol gallstone disease. In Gallbladder and Biliary Tract Diseases. Edited by Afdhal NH. New York: Marcel Decker; 2000:39–63.

    Google Scholar 

  19. Pozo MJ, Perez GJ, Nelson MT, Mawe GM: Ca(2+) sparks and BK currents in gallbladder myocytes: role in CCK-induced response. Am J Physiol Gastrointest Liver Physiol 2002, 282:G165-G174. This article reviews clamp techniques in gallbladder smooth muscle cells. Ryanodine receptor and BK channels contribute to the regulation of gallbladder smooth muscle excitability, and CCK can act in part by inhibiting this pathway.

    PubMed  CAS  Google Scholar 

  20. Alcon S, Morales S, Camello PJ, Pozo MJ: Contribution of different phospholipases and arachidonic acid metabolites in the response of gallbladder smooth muscle to cholecystokinin. Biochem Pharmacol 2002, 64:1157–1167. In guinea pig gallbladder muscle strips, CCK activates various phospholipases (PC-PLC, PI-PLC, and PLD) to produce DAG, which in turn stimulates PKC and provides a substrate for the generation of arachidonic acid. Another phospholipase, PLA2. is a source of arachidonic acid, the metabolites of which are, in part, responsible for determining the magnitude of the CCK-evoked contraction.

    Article  PubMed  CAS  Google Scholar 

  21. Yegen B, Biren T, Onat F, et al.: Modulation of gallbladder contraction by pirenzepine in humans. Am J Gastroenterol 1995, 90:1489–1494.

    PubMed  CAS  Google Scholar 

  22. Stengel PW, Cohen ML: Muscarinic receptor knockout mice: role of muscarinic acetylcholine receptors M(2), M(3), and M(4) in carbamylcholine-induced gallbladder contractility. J Pharmacol Exp Ther 2002, 301:643–650. In muscarinic receptor knockout mice, M3, and to a lesser extent, M2, receptors, are the predominant muscarinic receptors mediating gallbladder contractility, and M4 receptors appear to be necessary for optimal potency of carbamylcholine in gallbladder contraction.

    Article  PubMed  CAS  Google Scholar 

  23. Parkman HP, Garbarino R, Ryan JP: Myosin light chain phosphorylation correlates with contractile force in guinea pig gallbladder muscle. Dig Dis Sci 2001, 46:176–181. Initiation of gallbladder cholinergic contraction is dependent on phosphorylation of myosin light chains.

    Article  PubMed  CAS  Google Scholar 

  24. Guarraci FA, Pozo MJ, Palomares SM, et al.: Opioid agonists inhibit excitatory neurotransmission in ganglia and at the neuromuscular junction in Guinea pig gallbladder. Gastroenterology 2002, 122:340–351. Intracellular recordings from gallbladder neurons and smooth muscle of the guinea pig and tension measurements from muscle strips are described. Opiates cause presynaptic inhibition of excitatory neurotransmission at two sites within the wall of the gallbladder: vagal preganglionic terminals in ganglia and neuromuscular nerve terminals. Opiates can contribute to gallbladder stasis by inhibiting ganglionic activity and neurogenic contractions.

    Article  PubMed  CAS  Google Scholar 

  25. Schatzmann HJ: The calcium pump of the surface membrane and of the sarcoplasmic reticulum. Annu Rev Physiol 1989, 51:473–485.

    Article  PubMed  CAS  Google Scholar 

  26. Casteels R, Van Breemen C: Active and passive Ca2+ fluxes across cell membranes of the guinea-pig taenia coli. Pflugers Arch 1975, 359:197–207.

    Article  PubMed  CAS  Google Scholar 

  27. Schjoldager B, Shaw MJ, Powers SP, et al.: Bovine gallbladder muscularis: source of a myogenic receptor for cholecystokinin. Am J Physiol 1988, 254:G294-G299.

    PubMed  CAS  Google Scholar 

  28. Poston GJ, Singh P, Draviam E, et al.: Early stages of gallstone formation in guinea pig are associated with decreased biliary sensitivity to cholecystokinin. Dig Dis Sci 1992, 37:1236–1244.

    Article  PubMed  CAS  Google Scholar 

  29. Schjoldager BT: Role of CCK in gallbladder function. Ann N Y Acad Sci 1994, 713:207–218.

    Article  PubMed  CAS  Google Scholar 

  30. Schjoldager B, Molero X, Miller LJ: Functional and biochemical characterization of the human gallbladder muscularis cholecystokinin receptor. Gastroenterology 1989, 96:1119–1125.

    PubMed  CAS  Google Scholar 

  31. Aoki T, Ueno T, Toyonaga A, et al.: Radiographic evidence of cholecystokinin octapeptide receptors in the hamster gallbladder. Scand J Gastroenterol 1991, 26:1165–1172.

    PubMed  CAS  Google Scholar 

  32. Bitar KN, Bradford PG, Putney JW, Makhlouf GM: Stoichiometry of contraction and Ca2+ mobilization by inositol-1,4,5-trisphosphate in isolated gastric smooth muscle cells. J Biol Chem 1986, 261:16591–16596.

    PubMed  CAS  Google Scholar 

  33. Chen Q, Yu P, De Petris G, et al.: Distinct muscarinic receptors and signal transduction pathways in gallbladder muscle. J Pharmacol Exp Ther 1995, 273:650–655.

    PubMed  CAS  Google Scholar 

  34. Yu P, Chen Q, Harnett KM, et al.: Direct G protein activation reverses impaired CCK signaling in human gallbladders with cholesterol stones. Am J Physiol 1995, 269:G659-G665.

    PubMed  CAS  Google Scholar 

  35. Chen Q, De Petris G, Yu P, et al.: Different pathways mediate cholecystokinin actions in cholelithiasis. Am J Physiol 1997, 272:G838-G844.

    PubMed  CAS  Google Scholar 

  36. Yu P, Chen Q, Biancani P, Behar J: Membrane cholesterol alters gallbladder muscle contractility in prairie dogs. Am J Physiol 1996, 271:G56-G61.

    PubMed  CAS  Google Scholar 

  37. Amaral J, Xiao ZL, Chen Q, et al.: Gallbladder muscle dysfunction in patients with chronic acalculous disease. Gastroenterology 2001, 120:506–511.

    Article  PubMed  CAS  Google Scholar 

  38. Portincasa P, Di Ciaula A, Baldassarre G, et al.: Gallbladder motor function in gallstone patients: sonographic and in vitro studies on the role of gallstones, smooth muscle function and gallbladder wall inflammation. J Hepatol 1994, 21:430–440. This large integrated study compared gallbladder motility in vivo and smooth muscle strip contractility in vitro in cholesterol stone patients, pigment stone patients, and healthy subjects. A form of hypertrophic leiomyopathy was observed in gallstone patients with the most impaired gallbladder motor function.

    Article  PubMed  CAS  Google Scholar 

  39. Bird NC, Wegstapel H, Chess-Williams R, Johnson AG: In vitro contractility of stimulated and non-stimulated human gallbladder muscle. Neurogastroenterol Motil 1996, 8:63–68.

    PubMed  CAS  Google Scholar 

  40. Severi C, Grider JR, Makhlouf GM: Functional gradients in muscle cells isolated from gallbladder, cystic duct, and common bile duct. Am J Physiol 1988, 255:G647-G652.

    PubMed  CAS  Google Scholar 

  41. Jennings LJ, Xu QW, Firth TA, et al.: Cholesterol inhibits spontaneous action potentials and calcium currents in guinea pig gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol 1999, 277:G1017-G1026.

    CAS  Google Scholar 

  42. Dopico AM, Walsh JV Jr, Singer JJ: Natural bile acids and synthetic analogues modulate large conductance Ca2+-activated K+ (BKCa) channel activity in smooth muscle cells. J Gen Physiol 2002, 119:251–273. By patch-clamp techniques, natural bile acids and synthetic analogues were tested on rabbit mesenteric artery smooth muscle cells and smooth muscle cells freshly dissociated from rabbit main pulmonary artery and gallbladder. Bile acid concentrations that increase BK(Ca) channel activity in mesenteric artery smooth muscle cells are found in the systemic circulation under a variety of human pathophysiologic conditions, and their ability to enhance BK(Ca) channel activity may explain their relaxing effect on smooth muscle.

    Article  PubMed  CAS  Google Scholar 

  43. Ginanni Corradini S, Ripani C, Della Guardia P, et al.: The human gallbladder increases cholesterol solubility in bile by differential lipid absorption: a study using a new in vitro model of isolated intra-arterially perfused gallbladder. Hepatology 1998, 28:314–322.

    Article  Google Scholar 

  44. Ginanni Corradini S, Elisei W, Giovannelli L, et al.: Impaired human gallbladder lipid absorption in cholesterol gallstone disease and its effect on cholesterol solubility in bile. Gastroenterology 2000, 118:912–920.

    Article  Google Scholar 

  45. LaMont JT, Carey MC: Cholesterol gallstone formation. 2. Pathobiology and pathomechanics. Prog Liver Dis 1992, 10:165–191.

    PubMed  CAS  Google Scholar 

  46. van Erpecum KJ, Venneman NG, Portincasa P, vanBerge-Henegouwen GP: Agents affecting gall-bladder motility: role in treatment and prevention of gallstones. Aliment Pharmacol Ther 2000, 14 Suppl 2:66–70.

    Article  PubMed  Google Scholar 

  47. Stolk MF, van Erpecum KJ, Peeters TL, et al.: Interdigestive gallbladder emptying, antroduodenal motility, and motilin release patterns are altered in cholesterol gallstone patients. Dig Dis Sci 2001, 46:1328–1334.

    Article  PubMed  CAS  Google Scholar 

  48. Jazrawi RP, Pazzi P, Petroni ML, et al.: Postprandial gallbladder motor function: refilling and turnover of bile in health and cholelithiasis. Gastroenterology 1995, 109:582–591.

    Article  PubMed  CAS  Google Scholar 

  49. Portincasa P, Minerva F, Moschetta A, et al.: In vitro studies of gall-bladder smooth muscle function: relevance in cholesterol gallstone disease. Aliment Pharmacol Ther 2000, 14(Suppl 2):19–26.

    Article  PubMed  CAS  Google Scholar 

  50. Xu QW, Shaffer EA: The potential site of impaired gallbladder contractility in an animal model of cholesterol gallstone disease. Gastroenterology 1996, 110:251–257.

    Article  PubMed  CAS  Google Scholar 

  51. Chen Q, Amaral J, Biancani P, Behar J: Excess membrane cholesterol alters human gallbladder muscle contractility and membrane fluidity. Gastroenterology 1999, 116:678–685.

    Article  PubMed  CAS  Google Scholar 

  52. Chen Q, Amaral J, Oh S, et al.: Gallbladder relaxation in patients with pigment and cholesterol stones. Gastroenterology 1997, 113:930–937.

    Article  PubMed  CAS  Google Scholar 

  53. DeCarvalho S: Atherosclerosis. I. A leiomyoproliferative disease of the arteries resulting from the breakdown of the endothelial barrier to potent blood growth factors. Angiology 1995, 36:497–710.

    Google Scholar 

  54. Takata Y, Takeda S, Kawanami T, et al.: Promoter analysis of human cholecystokinin type-A receptor gene. J Gastroenterol 2002, 37:815–820. Using STC-1 cells, an enteroendocrine tumor cell line, the authors measured the promoter activity of the human CCKAR gene by a transient transfection method. They showed that the reported polymorphism may not play a role in transcriptional regulation.

    Article  PubMed  CAS  Google Scholar 

  55. Schneider H, Sanger H, Hanisch E: In vitro effects of cholecystokinin fragments on human gallbladders: evidence for an altered CCK-receptor structure in a subgroup of patients with gallstones. J Hepatol 1997, 26:1063–1068.

    Article  PubMed  CAS  Google Scholar 

  56. Upp JR, Jr., Nealon WH, Singh P, et al.: Correlation of cholecystokinin receptors with gallbladder contractility in patients with gallstones. Ann Surg 1987, 205:641–648.

    Article  PubMed  Google Scholar 

  57. Schjoldager B, Molero X, Miller LJ: Gallbladder CCK receptors: species differences in glycosylation of similar protein cores. Regul Peptides 1990, 28:265–272.

    Article  CAS  Google Scholar 

  58. Miyasaka K, Takata Y, Funakoshi A: Association of cholecystokinin A receptor gene polymorphism with cholelithiasis and the molecular mechanisms of this polymorphism. J Gastroenterol 2002, 37 Suppl 14:102–106. Involvement of CCKAR in gallstone formation was confirmed in this study with CCKAR gene knockout mice; gallstone formation was enhanced in these animals. Thus, deteriorating gallbladder contractions, possibly induced by alterations in the CCKAR gene, as well as CCKAR gene polymorphism, promotes gallstone formation.

    PubMed  CAS  Google Scholar 

  59. Yu P, Chen Q, Xiao Z, et al.: Signal transduction pathways mediating CCK-induced gallbladder muscle contraction. Am J Physiol 1998, 275:G203–11.

    PubMed  CAS  Google Scholar 

  60. Behar J, Rhim BY, Thompson W, Biancani P: Inositol trisphosphate restores impaired human gallbladder motility associated with cholesterol stones. Gastroenterology 1993, 104:563–568.

    PubMed  CAS  Google Scholar 

  61. van de Heijning BJM, van de Meeberg P, Portincasa P, et al.: Effects of ursodeoxycholic acid therapy on in vitro gallbladder contractility in patients with cholesterol gallstones. Dig Dis Sci 1999, 44:190–196. Ursodeoxycholic acid treatment improves in vitro contractility of human gallbladder strips in gallstone patients. This finding may be related to a reduced biliary cholesterol saturation.

    Article  Google Scholar 

  62. Pauletzki JG, Xu QW, Shaffer EA: Inhibition of gallbladder emptying decreases cholesterol saturation in bile in the Richardson ground squirrel. Hepatology 1995, 22:325–331.

    PubMed  CAS  Google Scholar 

  63. Xu QW, Freedman SM, Shaffer EA: Inhibitory effect of bile salts on gallbladder smooth muscle contractility in the guinea pig in vitro. Gastroenterology 1997, 112:1699–1706.

    Article  PubMed  CAS  Google Scholar 

  64. Behar J, Lee KY, Thompson WR, Biancani P: Gallbladder contraction in patients with pigment and cholesterol stones. Gastroenterology 1989, 97:1479–1484.

    PubMed  CAS  Google Scholar 

  65. Lee KY, Biancani P, Behar J: Calcium sources utilized by cholecystokinin and acetylcholine in the cat gallbladder muscle. Am J Physiol 1989, 256:G785-G788.

    PubMed  CAS  Google Scholar 

  66. Chen Q, Chitinavis V, Xiao Z, et al.: Impaired G protein function in gallbladder muscle from progesterone-treated guinea pigs. Am J Physiol 1998, 274:G283–9.

    PubMed  CAS  Google Scholar 

  67. Xiao ZL, Chen Q, Biancani P, Behar J: Mechanisms of gallbladder hypomotility in pregnant guinea pigs. Gastroenterology 1999, 116:411–419.

    Article  PubMed  CAS  Google Scholar 

  68. Bird NC, Ahmed R, Chess-Williams R, Johnson AG: Active relaxation of human gallbladder muscle is mediated by ATPsensitive potassium channels. Digestion 2002, 65:220–226. These authors gave the first demonstration of K(ATP) channels in human gallbladder. These channels cause significant relaxation in the presence of hormonal and muscarinic agonists and may represent a major pathway for gallbladder relaxation.

    Article  PubMed  CAS  Google Scholar 

  69. Lindaman BA, Hinkhouse MM, Conklin JL, Cullen JJ: The effect of phosphodiesterase inhibition on gallbladder motility in vitro. J Surg Res 2002, 105:102–108.

    Article  PubMed  CAS  Google Scholar 

  70. Kano M, Shoda J, Satoh S, et al.: Increased expression of gallbladder cholecystokinin: a receptor in prairie dogs fed a high-cholesterol diet and its dissociation with decreased contractility in response to cholecystokinin. J Lab Clin Med 2002, 139:285–294. In prairie dogs fed a high-cholesterol diet, a decrease in gallbladder contractility related to impairment of CCK signaling and phospholipase A2 PLA2-induced mucosal inflammation in the gallbladder was observed. Associated biliary alterations favoring cholesterol crystal formation pathogenetically contribute to the formation of cholesterol gallstones.

    Article  PubMed  CAS  Google Scholar 

  71. Merg AR, Kalinowski SE, Hinkhouse MM, et al.: Mechanisms of impaired gallbladder contractile response in chronic acalculous cholecystitis. J Gastrointest Surg 2002, 6:432–437. In vivo gallbladder ejection fraction was shown to be related to in vitro smooth muscle contractility. The impaired gallbladder emptying in chronic acalculous cholecystitis appears to be caused by diminished spontaneous contractile activity and decreased contractile responsiveness to CCK and electric field stimulation.

    Article  PubMed  Google Scholar 

  72. Nissan A, Freund HR, Hanani M: Direct inhibitory effect of erythromycin on human alimentary tract smooth muscle. Am J Surg 2002, 183:413–418.

    Article  PubMed  CAS  Google Scholar 

  73. O’Riordan AM, Quinn T, Baird AW: Role of prostaglandin E(2) and Ca(2+) in bradykinin induced contractions of guineapig gallbladder in vitro. Eur J Pharmacol 2001, 431:245–252.

    Article  PubMed  CAS  Google Scholar 

  74. Al Jiffry BO, Meedeniya AC, Chen JW, et al.: Endothelin-1 induces contraction of human and Australian possum gallbladder in vitro. Regul Pept 2001, 102:31–39.

    Article  Google Scholar 

  75. Xiao ZL, Chen Q, Biancani P, Behar J: Abnormalities of gallbladder muscle associated with acute inflammation in guinea pigs. Am J Physiol Gastrointest Liver Physiol 2001, 281:G490-G497.

    PubMed  CAS  Google Scholar 

  76. Alcon S, Morales S, Camello PJ, et al.: A redox-based mechanism for the contractile and relaxing effects of NO in the guinea-pig gall bladder. J Physiol 2001, 532:793–810.

    Article  PubMed  CAS  Google Scholar 

  77. Greaves RR, O’Donnell LJ, Farthing MJ: Differential effect of prostaglandins on gallstone-free and gallstone-containing human gallbladder. Dig Dis Sci 2000, 45:2376–2381.

    Article  PubMed  CAS  Google Scholar 

  78. Huang SC, Lee MC, Wei CK, Huang SM: Endothelin receptors in human and guinea-pig gallbladder muscle. Regul Pept 2001, 98:145–153.

    Article  PubMed  CAS  Google Scholar 

  79. Parkman HP, James AN, Thomas RM, et al.: Effect of indomethacin on gallbladder inflammation and contractility during acute cholecystitis. J Surg Res 2001, 96:135–142.

    Article  PubMed  CAS  Google Scholar 

  80. Greaves RR, O’Donnell LJ, Battistini B, et al.: The differential effect of VIP and PACAP on guinea pig gallbladder in vitro. Eur J Gastroenterol Hepatol 2000, 12:1181–1184.

    Article  PubMed  CAS  Google Scholar 

  81. Kline LW, Benishin CG, Pang PK: Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) relax cholecystokinin-induced tension in guinea pig gallbladder strips. Regul Pept 2000, 91:83–88.

    Article  PubMed  CAS  Google Scholar 

  82. Cullen JJ, Maes EB, Aggrawal S, et al.: Effect of endotoxin on opossum gallbladder motility: a model of acalculous cholecystitis. Ann Surg 2000, 232:202–207.

    Article  PubMed  CAS  Google Scholar 

  83. Pomeranz IS, Davison JS, Shaffer EA: Direct determination of the contractility of the guinea pig gallbladder: a new in vivo model. Can J Physiol Pharmacol 1985, 63:1038–1042.

    PubMed  CAS  Google Scholar 

  84. Xu QW, Scott RB, Tan DT, Shaffer EA: Effect of the prokinetic agent, erythromycin, in the Richardson ground squirrel model of cholesterol gallstone disease. Hepatology 1998, 28:613–619.

    Article  PubMed  CAS  Google Scholar 

  85. Koutsoviti-Papadopoulou M, Kounenis G, Batzias G, Elezoglou V: Effect of cisapride on the isolated guinea pig gall bladder and common bile duct. Gen Pharmacol 1997, 29:863–867.

    PubMed  CAS  Google Scholar 

  86. McKirdy ML, Johnson CD, McKirdy HC: Inflammation impairs neurally mediated responses to electrical field stimulation in isolated strips of human gallbladder muscle. Dig Dis Sci 1994, 39:2229–2234.

    Article  PubMed  CAS  Google Scholar 

  87. Martinez-Cuesta MA, Moreno L, Morillas J, et al.: Influence of cholecystitis state on pharmacological response to cholecystokinin of isolated human gallbladder with gallstones. Dig Dis Sci 2003, 48:898–905. Tensiometric studies isolating human gallbladder strips showed that the presence of gallstones in the gallbladder is correlated with a loss of prostaglandin-modulated CCK contraction. However, the excessive release of serotonin in advanced cholecystitis normalizes the contraction to CCK, suggesting that the state of cholecystitis affects the pool of inflammatory mediators responsible for gallbladder CCK-altered motility.

    Article  PubMed  CAS  Google Scholar 

  88. Fridhandler TM, Davison JS, Shaffer EA: Defective gallbladder contractility in the ground squirrel and prairie dog during the early stages of cholesterol gallstone formation. Gastroenterology 1983, 85:830–836.

    PubMed  CAS  Google Scholar 

  89. Xu QW, Scott RB, Tan DTM, Shaffer EA: Slow intestinal transit: a motor disorder contributing to cholesterol gallstone formation in the ground squirrel. Hepatology 1996, 23:1664–1672.

    Article  PubMed  CAS  Google Scholar 

  90. Mansour A, Dawoud I, Gad-El-Hak N: The potential site of disordered gallbladder contractility during the early stage of cholesterol gallstone formation. Hepatogastroenterology 1998, 45:1404–1409.

    PubMed  CAS  Google Scholar 

  91. Li YF, Moody FG, Weisbrodt NW, et al.: Decrease of contractility of prairie dog gallbladder muscle strips following cholesterol feeding. Surg Forum 1984, 35:224–226.

    Google Scholar 

  92. Zhu XG, Greeley GH, Newman J, et al.: Correlation of in vitro measurements of contractility of the gallbladder with in vivo ultrasonographic findings in patients with gallstones. Surg Gynecol Obstet 1985, 161:470–472.

    PubMed  CAS  Google Scholar 

  93. Lennon F, Feeley TM, Clanachan AS, Scott GW: Effects of histamine receptor stimulation on diseased gallbladder and cystic duct. Gastroenterology 1984, 87:257–262.

    PubMed  CAS  Google Scholar 

  94. Nahrwold DL, Rose RC, Ward SP: Abnormalities in gallbladder morphology and function in patients with cholelithiasis. Ann Surg 1976, 184:415–421.

    Article  PubMed  CAS  Google Scholar 

  95. Trevisani M, Amadesi S, Schmidlin F, et al.: Bradykinin B2 receptors mediate contraction in the normal and inflamed human gallbladder in vitro. Gastroenterology 2003, 125:126–135. In receptor-binding studies using polymerase chain reaction techniques, immunohistochemistry, and contractility studies in vitro, it was shown that the components of the kinin system are expressed in the human gallbladder and that bradykinin is a powerful spasmogen via B2 receptor activation in the normal and, especially, in the inflamed human gallbladder.

    Article  PubMed  CAS  Google Scholar 

  96. Kano M, Shoda J, Irimura T, et al.: Effects of long-term ursodeoxycholate administration on expression levels of secretory low-molecular-weight phospholipases A2 and mucin genes in gallbladders and biliary composition in patients with multiple cholesterol stones. Hepatology 1998, 28:302–313.

    Article  PubMed  CAS  Google Scholar 

  97. Stolk MFJ, van de Heijning BJM, van Erpecum KJ, et al.: Effect of bile salts on in vitro gallbladder motility: preliminary study. Ital J Gastroenterol Hepatol 1996, 28:105–110.

    CAS  Google Scholar 

  98. Xiao ZL, Biancani P, Carey MC, Behar J: Hydrophilic but not hydrophobic bile acids prevent gallbladder muscle dysfunction in acute cholecystitis. Hepatology 2003, 37:1442–1450. Oral treatment with the hydrophilic, less cytotoxic bile salt ursodeoxycholic acid prevents gallbladder muscle damage caused by bile duct ligation, whereas oral treatment with the more toxic bile salt chenodeoxycholate worsens the defective muscle contractility and the oxidative stress in the guinea pig.

    Article  PubMed  CAS  Google Scholar 

  99. Xiiao ZL, Rho AK, Biancani P, Behar J: Effects of bile acids on the muscle functions of guinea pig gallbladder. Am J Physiol Gastrointest Liver Physiol 2002, 283:G87-G94. These authors provide further evidence of the deleterious effects of more cytotoxic bile salts on smooth muscle cell contractility in the gallbladder. Muscle cells obtained by enzymatic digestion from guinea pig gallbladders underwent contractility studies. Hydrophobic bile acids caused muscle cell dysfunction by stimulating the formation of H2O2 via activation of NADPH and xanthine oxidase. H2O2 causes lipid peroxidation and activates cPLA2 to increase PGE2 production, which, in turn, stimulates the synthesis of free-radical scavengers through the PKC-MAPK pathway.

    Google Scholar 

  100. Xiao ZL, Andrada MJ, Biancani P, Behar J: Reactive oxygen species (H(2)O(2)): effects on the gallbladder muscle of guinea pigs. Am J Physiol Gastrointest Liver Physiol 2002, 282:G300-G306. These studies were conducted on isolated smooth muscle cells (contractility to CCK, Ach, KCl, and CCK binding). Treatment with reactive oxygen species (H2O2) increased the level of lipid peroxidation and caused damage to the plasma membrane of the gallbladder muscle and contraction through the generation of PGE2 induced by cPLA2-cyclooxygenase and probably mediated by the PKC-MAPK pathway.

    PubMed  CAS  Google Scholar 

  101. Xu QW, Shaffer EA: Cisapride improves gallbladder contractility and bile lipid composition in an animal model of gallstone disease. Gastroenterology 1993, 105:1184–1191.

    PubMed  CAS  Google Scholar 

  102. Hemming JM, Guarraci FA, Firth TA, et al.: Actions of histamine on muscle and ganglia of the guinea pig gallbladder. Am J Physiol Gastrointest Liver Physiol 2000, 279:G622-G630.

    PubMed  CAS  Google Scholar 

  103. Stolk MFJ, van Erpecum KJ, Renooij W, et al.: Gallbladder emptying in vivo, bile composition and nucleation of cholesterol crystals in patients with cholesterol gallstones. Gastroenterology 1995, 108:1882–1888.

    Article  PubMed  CAS  Google Scholar 

  104. Pomeranz IS, Shaffer EA: Abnormal gallbladder emptying in a subgroup of patients with gallstones. Gastroenterology 1985, 88:787–791.

    PubMed  CAS  Google Scholar 

  105. van Erpecum KJ, vanBerge-Henegouwen GP, Stolk MFJ, et al.: Fasting gallbladder volume, postprandial emptying and cholecystokinin release in gallstone patients and normal subjects. J Hepatol 1992, 14:194–202.

    Article  PubMed  Google Scholar 

  106. Pauletzki JG, Cicala M, Holl J, et al.: Correlation between gallbladder fasting volume and postprandial emptying in patients with gallstones and healthy controls. Gut 1993, 34:1443–1447.

    PubMed  CAS  Google Scholar 

  107. Masclee AAM, Jansen JB, Driessen WM, et al.: Plasma cholecystokinin and gallbladder responses to intraduodenal fat in gallstone patients. Dig Dis Sci 1989, 34:353–359.

    Article  PubMed  CAS  Google Scholar 

  108. Pauletzki JG, Sailer C, Klueppelberg U, et al.: Gallbladder emptying determines early gallstone clearance after shock-wave lithotripsy. Gastroenterology 1994, 107:1496–1502.

    PubMed  CAS  Google Scholar 

  109. Berr F, Mayer M, Sackmann M, et al.: Pathogenic factors in early recurrence of cholesterol gallstones. Gastroenterology 1994, 106:215–224.

    PubMed  CAS  Google Scholar 

  110. Shulz M, Hanisch E, Guldutuna S: In-vitro-kontraktilitatsverhalten humaner muskulatur von gallenblasen mit und ohne steinerkrankung: Relevanz des prostaglandin-systems fur die CCK-regulierte motorik. Z Gastroenterol 1993, 31:376–387.

    Google Scholar 

  111. Portincasa P, Di Ciaula A, Vendemiale G, et al.: Gallbladder motility and cholesterol crystallization in bile from patients with pigment and cholesterol gallstones. Eur J Clin Invest 2000, 30:317–324.

    Article  PubMed  CAS  Google Scholar 

  112. Wegstapel H, Bird NC, Chess-Williams R, Johnson AG: n, and in vitro contractility of the gallbladder in patients with gallstones: Is biliary colic muscular in origin? Scand J Gastroenterol 1999, 34:421–425.

    Article  PubMed  CAS  Google Scholar 

  113. Moschetta A, Stolk MF, Rehfeld JF, et al.: Severe impairment of postprandial cholecystokinin release and gall-bladder emptying and high risk of gallstone formation in acromegalic patients during Sandostatin LAR. Aliment Pharmacol Ther 2001, 15:181–185.

    Article  PubMed  CAS  Google Scholar 

  114. Hussaini SH, Pereira SP, Veysey MJ, et al.: Role of gall bladder emptying and intestinal transit in the pathogenesis of octreotide induced gallbladder stones. Gut 1996, 38:775–783.

    PubMed  CAS  Google Scholar 

  115. Mawe GM, Gokin AP, Wells DG: Actions of cholecystokinin and norepinephrine on vagal inputs to ganglion cells in guinea pig gallbladder. Am J Physiol 1994, 267:G1146-G1151.

    PubMed  CAS  Google Scholar 

  116. Mawe GM: The role of cholecystokinin in ganglionic transmission in the guinea-pig gall-bladder. J Physiol 1991, 439:89–102.

    PubMed  CAS  Google Scholar 

  117. Brotschi EA, LaMorte WW, Williams LFJ: Effect of dietary cholesterol and indomethacin on cholelithiasis and gallbladder motility in guinea pig. Dig Dis Sci 1984, 29:1050–1056.

    Article  PubMed  CAS  Google Scholar 

  118. Catnach SM, Fairclough PD, Trembath RC, et al.: Effect of oral erythromycin on gallbladder motility in normal subjects and subjects with gallstones. Gastroenterology 1992, 102:2071–2076.

    PubMed  CAS  Google Scholar 

  119. O’Donnell LJ, Wilson P, Guest P, et al.: Indomethacin and postprandial gallbladder emptying. Lancet 1992, 339:269–271.

    Article  PubMed  CAS  Google Scholar 

  120. Das A, Baijal SS, Saraswat VA: Effect of aspirin on gallbladder motility in patients with gallstone disease: a randomized, double-blind, placebo-controlled trial of two dosage schedules. Dig Dis Sci 1995, 40:1782–1785.

    Article  PubMed  CAS  Google Scholar 

  121. Parr E, Pozo MJ, Horowitz B, et al.: ERG K+ channels modulate the electrical and contractile activities of gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol 2003, 284:G392-G398. Characterization of ether-a-go-go-related gene 1 (ERG1) protein K(+) channels in human, mouse, and guinea pig gallbladder smooth muscle. ERG1 channels play a role in excitation-contraction coupling.

    PubMed  CAS  Google Scholar 

  122. Marzio L, Neri M, De Angelis C, et al.: Effect of cisapride on gallbladder kinetics in normals and patients with decreased gallbladder response to a liquid meal. Curr Ther Res 1987, 42:895–900.

    Google Scholar 

  123. Ziegenhagen DJ, Heitz W, Kruis W, et al.: Cisapride increases gallbladder volume in gallstone patients before and after extracorporeal shock wave lithotripsy. Aliment Pharmacol Ther 1993, 7:617–622.

    Article  PubMed  CAS  Google Scholar 

  124. Moummi C, Gullikson GW, Gaginella TS: Effect of endothelin-1 on guinea pig gallbladder smooth muscle in vitro. J Pharmacol Exp Ther 1992, 260:549–553.

    PubMed  CAS  Google Scholar 

  125. Al Jiffry BO, Chen JW, Toouli J, Saccone GT: Endothelins induce gallbladder contraction independent of elevated blood pressure in vivo in the Australian possum. J Gastrointest Surg 2002, 6:699–705.

    Article  Google Scholar 

  126. Al Jiffry BO, Toouli J, Saccone GT: Endothelin-3 induces both human and opossum gallbladder contraction mediated mainly by endothelin-B receptor subtype in vitro. J Gastroenterol Hepatol 2002, 17:324–331. Endothelin-3 produces potent gallbladder contraction in vitro, acting mainly via ETB receptors and also interacting with ETA receptors. ET-3 may participate in regulation of human gallbladder motility.

    Article  Google Scholar 

  127. Cardozo AM, D’Orleans-Juste P, Bkaily G, Rae GA: Simultaneous changes in intracellular calcium and tension induced by endothelin-1 and sarafotoxin S6c in guinea pig isolated gallbladder: influence of indomethacin. Can J Physiol Pharmacol 2002, 80:458–463.

    Article  PubMed  CAS  Google Scholar 

  128. Jennings LJ, Salido GM, Pozo MJ, et al.: The source and action of histamine in the isolated guinea-pig gallbladder. Inflamm Res 1995, 44:447–453.

    Article  PubMed  CAS  Google Scholar 

  129. Persson CGA: Adrenoreceptors in the gallbladder. Acta Pharmacol Toxicol 1972, 31:177–185.

    Article  CAS  Google Scholar 

  130. McKirdy ML, McKirdy HC, Marshall RW, Lewis MJ: Evidence for the involvement of nitric oxide in the non-adrenergic non-cholinergic relaxation of sphinter muscle strips in vitro. J Physiol (Lond) 1992, 446:592P.

    Google Scholar 

  131. McKirdy ML, McKirdy HC, Johnson CD: Non-adrenergic noncholinergic inhibitory innervation shown by electrical field stimulation of isolated strips of human gall bladder muscle. Gut 1994, 35:412–416.

    PubMed  CAS  Google Scholar 

  132. Greaves R, Miller J, O’Donnell L, et al.: Effect of the nitric oxide donor, glyceryl trinitrate, on human gall bladder motility. Gut 1998, 42:410–413.

    Article  PubMed  CAS  Google Scholar 

  133. Utkan NZ, Utkan T, Sarioglu Y, et al.: Investigation of the mechanism of nicotine-induced relaxation in guinea pig gallbladder. J Surg Res 2003, 110:272–275. Nicotine induces relaxation of the guinea pig gallbladder, but the cellular mechanism(s) by which nicotine acts on gallbladder smooth muscle remain unknown. The effect is not mediated by the release of noradrenaline, nitric oxide, prostaglandins, or a related substance, or by the activation of potassium channels or stimulation of nicotinic cholinoceptors.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portincasa, P., Di Ciaula, A. & vanBerge-Henegouwen, G.P. Smooth muscle function and dysfunction in gallbladder disease. Curr Gastroenterol Rep 6, 151–162 (2004). https://doi.org/10.1007/s11894-004-0043-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-004-0043-0

Keywords

Navigation