Skip to main content

Advertisement

Log in

Bile Acid Metabolism and the Pathogenesis of Type 2 Diabetes

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2D) is a growing health problem worldwide, but the currently available strategies for therapy and prevention are insufficient. Recent observations indicate that bile acid homeostasis is altered in T2D. Bile acids are metabolic regulators that act as signaling molecules through receptor-dependent and -independent pathways. The most prominent signaling molecules mediating bile acid signaling are the nuclear receptor farnesoid X receptor (FXR) and the membrane receptor TGR5. Both are implicated in the regulation of lipid, glucose, and energy metabolism. Dysregulation of these pathways might contribute to the development of T2D and associated complications. Interestingly, data from studies with bile acids or bile acid sequestrants indicate that the manipulation of bile acid homeostasis might be an attractive approach for T2D therapy. In this review, we summarize the mechanisms of bile acid–mediated metabolic control that might be relevant in the pathogenesis of T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. IDF Diabetes Atlas. Available at http://www.diabetesatlas.org/. Accessed January 2011.

  2. Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89:147–91.

    Article  PubMed  CAS  Google Scholar 

  3. Thomas C, Pellicciari R, Pruzanski M, et al. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008;7:678–93.

    Article  PubMed  CAS  Google Scholar 

  4. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–74.

    Article  PubMed  CAS  Google Scholar 

  5. Bennion LJ, Grundy SM. Effects of diabetes mellitus on cholesterol metabolism in man. N Engl J Med. 1977;296:1365–71.

    Article  PubMed  CAS  Google Scholar 

  6. Abrams JJ, Ginsberg H, Grundy SM. Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus. Diabetes. 1982;31:903–10.

    Article  PubMed  CAS  Google Scholar 

  7. Brufau G, Stellaard F, Prado K, et al. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology. 2010;52:1455–64.

    Article  PubMed  CAS  Google Scholar 

  8. Brufau G, Bahr MJ, Staels B, et al. Plasma bile acids are not associated with energy metabolism in humans. Nutr Metab. 2010;7:73.

    Article  Google Scholar 

  9. Suhre K, Meisinger C, Döring A, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE. 2010;5:e13953.

    Article  PubMed  Google Scholar 

  10. Hyogo H, Roy S, Paigen B, et al. Leptin promotes biliary cholesterol elimination during weight loss in ob/ob mice by regulating the enterohepatic circulation of bile salts. J Biol Chem. 2002;277:34117–24.

    Article  PubMed  CAS  Google Scholar 

  11. • Herrema H, Meissner M, van Dijk TH et al. Bile salt sequestration induces hepatic de novo lipogenesis through farnesoid X receptor-and liver X receptor alpha-controlled metabolic pathways in mice. Hepatology. 2010; 51:806–816. This study is the first to give detailed insight into bile acid kinetics after sequestration in diabetic animal models.

    Article  PubMed  CAS  Google Scholar 

  12. • Kohli R, Kirby M, Setchell KDR et al. Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities. Am J Physiol Gastrointest Liver Physiol. 2010; 299:G652–60. This paper elegantly shows that short-circuiting of bile acid cycling might contribute to the metabolic improvements observed after bariatric surgery.

    Article  PubMed  CAS  Google Scholar 

  13. Patti M, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity. 2009;17:1671–7.

    Article  PubMed  CAS  Google Scholar 

  14. Li T, Owsley E, Matozel M, et al. Transgenic expression of cholesterol 7alpha-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice. Hepatology. 2010;52:678–90.

    Article  PubMed  CAS  Google Scholar 

  15. Prawitt J, Staels B. Bile acid sequestrants: glucose-lowering mechanisms. Metab Syndr Relat Disord. 2010;8 Suppl 1:S3–8.

    PubMed  CAS  Google Scholar 

  16. Schwartz SL, Lai Y, Xu J, et al. The effect of colesevelam hydrochloride on insulin sensitivity and secretion in patients with type 2 diabetes: a pilot study. Metab Syndr Relat Disord. 2010;8:179–88.

    Article  PubMed  CAS  Google Scholar 

  17. Kobayashi M, Ikegami H, Fujisawa T, et al. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes. 2007;56:239–47.

    Article  PubMed  CAS  Google Scholar 

  18. Shang Q, Saumoy M, Holst JJ, et al. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1. Am J Physiol Gastrointest Liver Physiol. 2010;298:G419–24.

    Article  PubMed  CAS  Google Scholar 

  19. Chen L, McNulty J, Anderson D, et al. Cholestyramine reverses hyperglycemia and enhances GLP-1 release in Zucker Diabetic Fatty rats. J Pharmacol Exp Ther. 2010;334:164–70.

    Article  PubMed  CAS  Google Scholar 

  20. Prawitt J, Caron S, Staels B. How to modulate FXR activity to treat the metabolic syndrome. Drug Discov Today Dis Mech. 2009;6:e55–64.

    Article  CAS  Google Scholar 

  21. Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2:217–25.

    Article  PubMed  CAS  Google Scholar 

  22. Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278:9435–40.

    Article  PubMed  CAS  Google Scholar 

  23. Maruyama T, Miyamoto Y, Nakamura T, et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun. 2002;298:714–9.

    Article  PubMed  CAS  Google Scholar 

  24. Nguyen A, Bouscarel B. Bile acids and signal transduction: role in glucose homeostasis. Cell Signal. 2008;20:2180–97.

    Article  PubMed  CAS  Google Scholar 

  25. Duran-Sandoval D, Mautino G, Martin G, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes. 2004;53:890–8.

    Article  PubMed  CAS  Google Scholar 

  26. Duran-Sandoval D, Cariou B, Percevault F, et al. The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition. J Biol Chem. 2005;280:29971–9.

    Article  PubMed  CAS  Google Scholar 

  27. Yamagata K, Daitoku H, Shimamoto Y, et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem. 2004;279:23158–65.

    Article  PubMed  CAS  Google Scholar 

  28. Ma K, Saha PK, Chan L, et al. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006;116:1102–9.

    Article  PubMed  CAS  Google Scholar 

  29. Stayrook KR, Bramlett KS, Savkur RS, et al. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology. 2005;146:984–91.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA. 2006;103:1006–11.

    Article  PubMed  CAS  Google Scholar 

  31. Cariou B, van Harmelen K, Duran-Sandoval D, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem. 2006;281:11039–49.

    Article  PubMed  CAS  Google Scholar 

  32. Cipriani S, Mencarelli A, Palladino G, et al. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res. 2010;51:771–84.

    Article  PubMed  CAS  Google Scholar 

  33. Popescu IR, Helleboid-Chapman A, Lucas A, et al. The nuclear receptor FXR is expressed in pancreatic beta-cells and protects human islets from lipotoxicity. FEBS Lett. 2010;584:2845–51.

    Article  PubMed  CAS  Google Scholar 

  34. Renga B, Mencarelli A, Vavassori P, et al. The bile acid sensor FXR regulates insulin transcription and secretion. Biochim Biophys Acta. 2010;1802:363–72.

    PubMed  CAS  Google Scholar 

  35. Katsuma SEA. Bile acids promote glucagon-like peptide-1 secretion through tgr5 in a murine enteroendocrine cell line stc-1. Biochem Biophys Res Commun. 2005;329:386–90.

    Article  PubMed  CAS  Google Scholar 

  36. Sato H, Genet C, Strehle A, et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem Biophys Res Commun. 2007;362:793–8.

    Article  PubMed  CAS  Google Scholar 

  37. • Thomas C, Gioiello A, Noriega L et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009; 10:167–177. This elaborate study is the first to propose a mechanism by which bile acids might improve glucose homeostasis via TGR5.

    Article  PubMed  CAS  Google Scholar 

  38. Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313:1137–40.

    Article  PubMed  Google Scholar 

  39. • Kars M, Yang L, Gregor MF et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes. 2010; 59:1899–1905. This is one of the rare investigations of receptor-independent effects of bile acids on insulin sensitivity in human patients.

    Article  PubMed  CAS  Google Scholar 

  40. Rizzo G, Disante M, Mencarelli A, et al. The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo. Mol Pharmacol. 2006;70:1164–73.

    Article  PubMed  CAS  Google Scholar 

  41. Abdelkarim M, Caron S, Duhem C, et al. The Farnesoid X Receptor Regulates Adipocyte Differentiation and Function by Promoting Peroxisome Proliferator-activated Receptor-{gamma} and Interfering with the Wnt/{beta}-Catenin Pathways. J Biol Chem. 2010;285:36759–67.

    Article  PubMed  CAS  Google Scholar 

  42. Fu L, John LM, Adams SH, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 2004;145:2594–603.

    Article  PubMed  CAS  Google Scholar 

  43. Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–9.

    Article  PubMed  CAS  Google Scholar 

  44. Maruyama T, Tanaka K, Suzuki J, et al. Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J Endocrinol. 2006;191:197–205.

    Article  PubMed  CAS  Google Scholar 

  45. López M, Varela L, Vázquez MJ, et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med. 2010;16:1001–8.

    Article  PubMed  Google Scholar 

  46. Lambert G, Amar MJA, Guo G, et al. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem. 2003;278:2563–70.

    Article  PubMed  CAS  Google Scholar 

  47. Bateson MC, Maclean D, Evans JR, et al. Chenodeoxycholic acid therapy for hypertriglyceridaemia in men. Br J Clin Pharmacol. 1978;5:249–54.

    PubMed  CAS  Google Scholar 

  48. Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113:1408–18.

    PubMed  CAS  Google Scholar 

  49. Kotronen A, Yki-Järvinen H. Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;28:27–38.

    Article  PubMed  CAS  Google Scholar 

  50. Volynets V, Spruss A, Kanuri G, et al. Protective effect of bile acids on the onset of fructose-induced hepatic steatosis in mice. J Lipid Res. 2010;51:3414–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are supported by the EU Grant HEPADIP (N° 018734) and received funding from Daiichi Sankyo.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Staels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prawitt, J., Caron, S. & Staels, B. Bile Acid Metabolism and the Pathogenesis of Type 2 Diabetes. Curr Diab Rep 11, 160–166 (2011). https://doi.org/10.1007/s11892-011-0187-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-011-0187-x

Keywords

Navigation