Skip to main content
Log in

Abstract

We construct a family of frames describing the norm and seminorm of the space \(H^s(\mathbb {R}^d)\). We also characterise Besov spaces modeled on \(L^2(\mathbb {R}^d)\). Our work is inspired by the discrete orthonormal Stockwell transform introduced by R.G. Stockwell, which provides a time-frequency localised version of the Fourier basis of \(L^2([0,1])\). This approach is a hybrid between Gabor and Wavelet frames. We construct explicit and computable examples of these frames, discussing their properties and comparing them with the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Battisti, U., Riba, L.: Window-dependent bases for efficient representations of the Stockwell transform. Appl. Comput. Harmonic Anal. 40(2), 292–320 (2016)

    Article  MathSciNet  Google Scholar 

  2. Battisti, U., Berra, M.: Explicit examples of \(L^2\)-frames associated to \(\alpha \)-partitioning. arXiv:1509.01437

  3. Bagher-Ebadian, H., Siddiqui, F., Liu, C., Movsas, B., Chetty, I.J.: On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers. Med. Phys. 44(5), 1755–1770 (2017)

    Article  Google Scholar 

  4. Berra, M., de Hoop, M.V., Romero, J.L.: A multi-scale Gaussian beam parametrix for the wave equation: the Dirichlet boundary value problem. arXiv:1705.00337

  5. Borup, L., Nielsen, M.: Frame decomposition of decomposition spaces. J. Fourier Anal. Appl. 13(1), 39–70 (2007)

    Article  MathSciNet  Google Scholar 

  6. Cabrelli, C., Mosquera, C.A., Paternostro, V.: Linear combinations of frame generators in systems of translates. J. Math. Anal. Appl. 413(2), 776–788 (2014)

    Article  MathSciNet  Google Scholar 

  7. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise \(C^2\) singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  Google Scholar 

  8. Canuto, C., Tabacco, A.: Multilevel decompositions of functional spaces. J. Fourier Anal. Appl. 3(6), 715–742 (1997)

    Article  MathSciNet  Google Scholar 

  9. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston (2016)

    MATH  Google Scholar 

  10. Daubechies, I.: Ten Lectures on Wavelets, vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

  11. Drabycz, S., Stockwell, R.G., Mitchell, J.R.: Image texture characterization using the discrete orthonormal S-transform. J. Digit. Imaging 22(6), 696–708 (2008)

    Article  Google Scholar 

  12. Feichtinger, H.G.: Atomic characterizations of modulation spaces through Gabor-type representations. Rocky Mt. J. Math. 19(1), 113–125 (1989). Constructive Function Theory—86 Conference (Edmonton, AB, 1986)

  13. Feichtinger, H.G., Gröbner, P.: Banach spaces of distributions defined by decomposition methods. I. Math. Nachr. 123, 97–120 (1985)

    Article  MathSciNet  Google Scholar 

  14. Fornasier, M.: Banach frames for \(\alpha \)-modulation spaces. Appl. Comput. Harmonic Anal. 22(2), 157–175 (2007)

    Article  MathSciNet  Google Scholar 

  15. Grobner, P.: Banachraeume Glatter Funktionen und Zerlegungsmethoden. ProQuest LLC, Ann Arbor, MI (1992). Thesis (Dr.natw.)—Technische Universitaet Wien (Austria)

  16. Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston (2001)

    MATH  Google Scholar 

  17. Guo, Q., Molahajloo, S., Wong, M.W.: Phases of modified Stockwell transforms and instantaneous frequencies. J. Math. Phys. 51(5), 05210-11 (2010)

    Article  MathSciNet  Google Scholar 

  18. Jansen, M.: Non-equispaced B-spline wavelets. Int. J. Wavelets Multiresolut. Inf. Process. 14(6), 1650056 (2016). (35)

    Article  MathSciNet  Google Scholar 

  19. Lions, J.-L., Peetre, J.: Sur une classe d’espaces d’interpolation. Inst. Hautes Études Sci. Publ. Math. 19, 5–68 (1964)

    Article  MathSciNet  Google Scholar 

  20. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1999)

    MATH  Google Scholar 

  21. Ottosen, E.S., Nielsen, M.: A characterization of sparse nonstationary Gabor expansions. J. Fourier Anal. Appl. (2017). https://doi.org/10.1007/s00041-017-9546-6

    Article  Google Scholar 

  22. Pridham, G., Steenwijk, M.D., Geurts, J.J.G., Zhang, Y.: A discrete polar Stockwell transform for enhanced characterization of tissue structure using MRI. Magn. Reson. Med. 44, 1755–1770 (2017)

    Google Scholar 

  23. Riba, L., Wong, M.W.: Continuous inversion formulas for multi-dimensional Stockwell transforms. Math. Model. Nat. Phenom. 8(1), 215–229 (2013)

    Article  MathSciNet  Google Scholar 

  24. Starck, J.-L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  MathSciNet  Google Scholar 

  25. Stockwell, R.G.: A basis for efficient representation of the S-transform. Digit. Signal Process. 17, 371–393 (2007)

    Article  Google Scholar 

  26. Stockwell, R.G., Mansinha, L., Lowe, R.P.: Localization of the complex spectrum: the S transform. IEEE Trans. Signal Process. 44, 998–1001 (1996)

    Article  Google Scholar 

  27. Voigtlaender, F.: Structured, compactly supported Banach frame decompositions of decomposition spaces (2016). arXiv:1612.08772

  28. Wang, Y., Orchard, J.: Fast discrete orthonormal Stockwell transform. SIAM J. Sci. Comput. 31(5), 4000–4012 (2009)

    Article  MathSciNet  Google Scholar 

  29. Wong, M.W., Zhu, H.: A characterization of Stockwell spectra. In: Modern Trends in Pseudo-Differential Operators, vol. 172 of Operator Theory: Advances and Applications, pp. 251–257. Birkhäuser, Basel (2007)

  30. Yan, Y., Zhu, H.: The generalization of discrete Stockwell transforms. In: 9th European Signal Processing Conference, pp. 1209–1213 (2011)

  31. Zhu, H., Goodyear, B.G., Lauzon, M.L., Brown, R.A., et al.: A new local multiscale fourier analysis for medical imaging. Med. Phys. 30(6), 1134–1141 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Fabio Nicola and Sandra Saliani for useful discussions on the subject. We also acknowledge the anonymous referee who helped improving the quality of the paper. We acknowledge that the present research has been partially supported by MIUR grant Dipartimenti di Eccellenza 2018-2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ubertino Battisti.

Appendices

Technical results

We show some technical result needed to prove the frame property.

Lemma A.1

Let \(s\ge 0\) and \(\varphi \) such that \(\varPhi _{j,k}\)—cf. (10)—satisfies

$$\begin{aligned} |\varPhi _{j,k}(\omega )|\lesssim \min \left( 1, \frac{2^{jd/2}}{\left( 1+d(\omega , I_{j,k}) \right) ^{\alpha +s}} \right) , \end{aligned}$$
(37)

for some \(\alpha \). Then

$$\begin{aligned} \frac{2^{js}}{(1+|\omega |)^{s}} |\varPhi _{j,k}(\omega )| \lesssim \min \left( 1, \frac{2^{jd/2}}{\left( 1+d(\omega , I_{j,k}) \right) ^{\alpha }} \right) . \end{aligned}$$
(38)

Proof

Inequality (38) is trivially verified when \(\omega \in I_{j,k}\) since \(\omega \asymp 2^j\).

Assume \(\omega \notin I_{j,k}\), then we immediately notice that by hypothesis (37)

$$\begin{aligned} \frac{2^{js}}{(1+|\omega |)^s} \left| \varPhi _{j,k}(\omega ) \right| \lesssim \frac{2^{js}}{(1+|\omega |)^s \left( 1+d(\omega ,I_{j,k}) \right) ^s} \frac{2^{jd/2}}{\left( 1+d(\omega ,I_{j,k}) \right) ^{\alpha }}. \end{aligned}$$

Now, there exists \(\overline{\omega }\in I_{j,k}\) such that \(d(\omega ,I_{j,k}) = |\omega - \overline{\omega }|\), moreover \(|\overline{\omega }|\asymp 2^j\) because the partition is admissible. Hence, by triangular inequality

$$\begin{aligned} \frac{2^{js}}{(1+|\omega |)^s} \left| \varPhi _{j,k}(\omega ) \right|&\lesssim \frac{2^{js}}{(1+|\omega |)^s \left( 1+|\overline{\omega }-\omega | \right) ^s} \frac{2^{jd/2}}{\left( 1+d(\omega ,I_{j,k}) \right) ^{\alpha }}\\&\lesssim \frac{2^{js}}{ \left( 1+|\overline{\omega }| \right) ^s} \frac{2^{jd/2}}{\left( 1+d(\omega ,I_{j,k}) \right) ^{\alpha }}\lesssim \frac{2^{jd/2}}{\left( 1+d(\omega ,I_{j,k}) \right) ^{\alpha }}. \end{aligned}$$

\(\square \)

With the same argument, one can show the following result.

Lemma A.2

Let \(s\ge 0\) and \(\varphi \) such that for all \(j \in {\mathbb {N}}\), \(\varPhi _{j,k}\)—cf. (10)—satisfies

$$\begin{aligned} |\varPhi _{j,k} (\omega )|\lesssim \left\{ \begin{array}{ll} \frac{ \min (1,|\omega | )^s 2^{jd/2}}{\left( 1+d(\omega , I_j) \right) ^{\alpha +s}},&{} \quad \omega \notin I_{j,k}\\ 1, &{}\quad \omega \in \mathbb {R}^d \end{array} \right. , \end{aligned}$$
(39)

for some \(\alpha >0\). Then

$$\begin{aligned} \frac{2^{j s}}{|\omega |^{s}} |\varPhi _{j,k}(\omega )| \lesssim \min \left( 1,\frac{2^{jd/2}}{\left( 1+d(\omega , I_{j,k}) \right) ^{\alpha }} \right) \end{aligned}$$
(40)

for all \(j \in {\mathbb {N}}\).

As a consequence of Lemma A.1, we have the following result.

Lemma A.3

Assume the hypothesis (37) of Lemma A.1 above and also that \(\alpha > d/2\). Then, there exists \( b_s \in \mathbb {R}\) such that

$$\begin{aligned} \sum _{j,k\in \varGamma }\frac{2^{2js}}{(1+|\omega |)^{2s}} |\varPhi _{j,k}(\omega )|^2\le b_s, \quad \text{ a.e. } \omega \in \mathbb {R}^d. \end{aligned}$$
(41)

Proof

Given \(\omega \in \mathbb {R}^d\), since the partition is admissible, there exists a finite collection of indices \(\varGamma _F, |\varGamma _F|<W_1\) such that \(\omega \in I_{j,k}, \{j,k\}\in \varGamma _F\). Assume for the moment \(W_1 = 1\) and \(\omega \in I_{\overline{j},\overline{k}}\). First, we want to estimate

$$\begin{aligned} \sum _{k\in K_j }\frac{2^{2js}}{(1+|\omega |)^{2s}} |\varPhi _{j,k}(\omega )|^2, \end{aligned}$$

for \(j=\overline{j}\). Clearly, \(\omega \asymp 2^{\overline{j}}\), hence \(\frac{2^{2js}}{(1+|\omega |)^{2s}} |\varPhi _{\overline{j},k}(\omega )|^2\lesssim 1\). Moreover, since the number of possible directions is bounded by \(C_K\),

$$\begin{aligned} \sum _{k\in K_{\overline{j}}}\frac{2^{2\overline{j}s}}{(1+|\omega |)^{2s}} |\varPhi _{\overline{j},k}(\omega )|^2 \lesssim C_K. \end{aligned}$$
(42)

With this majorisation, we can treat also the cases of the adjacent coronae, i.e. for \(j = {\overline{j}\pm 1}\). If \(j> \overline{j}+ 1\) or \(j < \overline{j}- 1\), then \(\mathrm {d}(\omega , I_{j,k})\gtrsim 2^j\), and the result follows as above. Hence, if \(W_1=1\), the result follows easily by the requirement on \(\alpha \). Indeed, using Lemma A.1, one gets

$$\begin{aligned} \sum _{|j-\overline{j}|>1, k\in K_j }\frac{2^{2js}}{(1+|\omega |)^{2s}} |\varPhi _{j,k}(\omega )|^2 \le C_K\left( 3 + \sum _{j}2^{j(d-2\alpha )} \right) , \end{aligned}$$
(43)

which is clearly bounded. Now we can repeat this argument a finite number of time if \(W_1>1\) and the result follows. \(\square \)

Lemma A.4

Let \(s\ge 0\) and \(\varphi \) such that \(\varPhi _{j,k}(\omega )\) satisfies hypothesis (37). Define

$$\begin{aligned} \widetilde{\varphi _{j,k,\lambda }}(t)=\frac{1}{2^{jd/2}} T_{2^{-j}\lambda } {\text {F}}^{-1}_{\omega \mapsto t}\left( \frac{2^{js}}{(1+|\omega |)^s} \varPhi _{j,k}(\omega ) \right) (t); \end{aligned}$$
(44)

then for \(\nu \in (0,1]\) and all jk the system of functions \( \left\{ \widetilde{\varphi _{j,k,\lambda }}(t) \right\} _{\lambda \in \nu {\mathbb {Z}}} \) is a Bessel sequence uniformly in jk, that is

$$\begin{aligned} \sum _{\lambda \in \nu {\mathbb {Z}}} \left| \left\langle \widetilde{\varphi _{j,k,\lambda }}, f\right\rangle \right| ^2\le C_{\nu } \left\| f \right\| ^2_{L^2(\mathbb {R}^d)} \end{aligned}$$
(45)

with \(C_{\nu }\) independent on jk.

Proof

A well known result (see again e.g. [9, Thm 9.2.5, p.206]) states that the Bessel property (45) of \(\left\{ \widetilde{\varphi _{j,k,\lambda }}(t) \right\} _{\lambda \in \nu {\mathbb {Z}}}\), for fixed j, is equivalent to the following condition

$$\begin{aligned} \varXi _{j,k}(\gamma )= \sum _{m \in {\mathbb {Z}}^d} \left| {\text {F}}\left( \widetilde{\varphi _{j,k,0}} \right) \left( \left( \gamma -m \right) \frac{2^j}{\nu } \right) \right| ^2\le C_\nu \frac{\nu ^d}{2^{jd}}, \quad a.e.\; \gamma \in [0,1]^d. \end{aligned}$$

By definition

$$\begin{aligned} \varXi _{j,k}(\gamma )&= \frac{1}{2^{jd}}\sum _{m\in {\mathbb {Z}}^d} \left| \frac{2^{js}}{\left( 1+\left| \left( \gamma -m \right) \frac{2^j}{\nu } \right| \right) ^s} \varPhi _{j,k}\left( \left( \gamma -m \right) \frac{2^j}{\nu } \right) \right| ^2. \end{aligned}$$

Using the hypothesis (37) and relation (38), we can write

$$\begin{aligned} \varXi _{j,k}(\gamma )&\lesssim \frac{1}{2^{jd}}\left( 1+ \sum _{|m|>1} \frac{2^{jd}}{ \left( 1+ d\left( \left( \gamma -m \right) \frac{2^j}{\nu }, I_{j,k} \right) \right) ^{2\alpha }} \right) \nonumber \\&\lesssim \frac{1}{2^{jd}}\left( 1+ \sum _{|m|> 1} \frac{2^{jd}}{ \left( (|m|-1) \frac{2^j}{\nu } \right) ^{2\alpha }} \right) \nonumber \\&\lesssim \frac{1}{2^{jd}}\left( 1+ \frac{\nu ^{2\alpha }}{2^{j(2\alpha -d)}} \sum _{|m|> 1} \frac{1}{ \left( (|m|-1) \right) ^{2\alpha }} \right) , \quad \text{ a.e. } \; \gamma \in [0,1], \end{aligned}$$
(46)

where the second inequality follows from our assumption on the radius. Again, by our hypothesis on \(\alpha \), the sum in (46) is convergent, and uniformly bounded with respect to j. \(\square \)

Lemma A.5

Let \(\varPhi _{j,k}\), \(\widetilde{\varphi _{j,k,\lambda }}\) as in Lemma A.4 and \(E_{j,k}\) as in (13).

If \(\nu \in (0,1]\) and \( {\text {supp}}\widehat{f} \cap E_{j,k} =\emptyset ,\) then

$$\begin{aligned} \sum _{\lambda \in \nu {\mathbb {Z}}} \left| \left\langle \widetilde{\varphi _{j,k,\lambda }}, f\right\rangle \right| ^2\le \frac{C_{\nu }}{2^{j(2\alpha -d)}} \left\| f \right\| ^2_{L^2(\mathbb {R}^d)}, \end{aligned}$$
(47)

with \(C_{\nu }\) as in Lemma A.4, therefore independent on jk.

Proof

Since \(\hat{f}(\omega )=0\) if \(\omega \in E_{j,k}\)

$$\begin{aligned} \sum _{\lambda \in \nu {\mathbb {Z}}} \left| \left\langle \widetilde{\varphi _{j,k,\lambda }}, f\right\rangle \right| ^2&=\sum _{\lambda \in \nu {\mathbb {Z}}} \left| \left\langle \chi _{\mathbb {R}{\setminus } E_{j,k} }{\text {F}}\left( \widetilde{\varphi _{j,k,\lambda }} \right) , {\text {F}}(f)\right\rangle \right| ^2. \end{aligned}$$

Therefore, using the same property of Lemma A.4, (47) is equivalent to prove that

$$\begin{aligned} \frac{1}{2^{jd}}\sum _{m\in {\mathbb {Z}}} \left| \chi _{\mathbb {R}{\setminus } E_{j,k}} \left( m_{\gamma ,j,\nu } \right) \frac{2^{js}}{\left( 1+\left| m_{\gamma ,j,\nu } \right| \right) ^s} \varPhi _{j,k}\left( m_{\gamma ,j,\nu } \right) \right| ^2\le \frac{1}{2^{j(2\alpha )}}, \end{aligned}$$
(48)

where \(m_{\gamma ,j,\nu } = \left( \gamma -m \right) \frac{2^j}{\nu }\). Since \(\nu \le 1 \), for each jk, there exist a finite number of consecutive indices m such that \(\left( \gamma -m \right) \frac{2^j}{\nu } \in E_{j,k}\) for some \(\gamma \in [0,1]\). We set

$$\begin{aligned} M_{j,\nu } = \left\{ m \in {\mathbb {Z}}{:}\, \exists \; \gamma \in [0,1] \text { such that } \left( \gamma -m \right) \frac{2^j}{\nu } \in E_{j,k} \right\} . \end{aligned}$$

We notice that \(M_{j,\nu }\) is uniformly bounded with respect to j, by the properties of the partitioning and by the definition of \(E_{j,k}\).

If \(m\in M_{j,\nu }\) and \(m_{\gamma ,j,\nu }\in E_{j,k}\), then

$$\begin{aligned} \left| \chi _{\mathbb {R}{\setminus } E_{j,k}} \left( m_{\gamma ,j,\nu } \right) \frac{2^{js}}{\left( 1+\left| m_{\gamma ,j,\nu } \right| \right) ^s} \varPhi _{j,k}\left( m_{\gamma ,j,\nu } \right) \right| ^2 = 0. \end{aligned}$$

Otherwise \(\chi _{\mathbb {R}{\setminus } E_{j,k}} \left( m_{\gamma ,j,\nu } \right) =1\) and, using Lemma A.1,

$$\begin{aligned} \left| \frac{2^{js}}{\left( 1+\left| m_{\gamma ,j,\nu } \right| \right) ^s} \varPhi _{j,k}\left( m_{\gamma ,j,\nu } \right) \right| ^2 \lesssim \left| \frac{2^{jd/2}}{\left( 1+2^j \right) ^{\alpha }} \right| ^2 \lesssim 2^{j(d-2\alpha )}. \end{aligned}$$

Hence, (48) is bounded by

$$\begin{aligned} \left| M_{j,\nu } \right| \left( 2^j \right) ^{-2\alpha } + \frac{1}{2^{jd}}\sum _{m\notin M_{j,\nu }} \left| \chi _{\mathbb {R}{\setminus } E_{j,k}} \left( m_{\gamma ,j,\nu } \right) \frac{2^{js}}{\left( 1+\mathrm {d}\left( m_{\gamma ,j,\nu },I_{j,k} \right) \right) ^s} \varPhi _{j,k}\left( m_{\gamma ,j,\nu } \right) \right| ^2. \end{aligned}$$
(49)

The second term in the equation above may be bounded as follows

$$\begin{aligned}&\frac{1}{2^{jd}}\sum _{m\notin M_{j,\nu }} \left| \chi _{\mathbb {R}{\setminus } E_{j,k}} \left( m_{\gamma ,j,\nu } \right) \frac{2^{js}}{\left( 1+\mathrm {d}\left( m_{\gamma ,j,\nu },I_{j,k} \right) \right) ^s} \varPhi _{j,k}\left( m_{\gamma ,j,\nu } \right) \right| ^2\\&\qquad \lesssim \frac{1}{2^{jd}} \frac{\nu ^{2\alpha } 2^{jd}}{\left( 2^j \right) ^{2\alpha }} \sum _{|m|\ge 2} \frac{1}{ \left( (|m|-1) \right) ^{2\alpha }}\lesssim \frac{\nu ^{2\alpha } }{\left( 2^j \right) ^{2\alpha }} \sum _{|m|\ge 2} \frac{1}{ \left( (|m|-1) \right) ^{2\alpha }}\lesssim \frac{\nu ^{2\alpha } }{\left( 2^j \right) ^{2\alpha }}. \end{aligned}$$

Then the assertion follows as in Lemma A.4. \(\square \)

Lemma A.6

Let \(s\ge 0\) and \(\varphi _{\bullet },\varphi \) be a system of functions such that there exists \(a>0\) such that, for all \(\omega \in \mathbb {R}^d\) then

$$\begin{aligned} \left| \varPhi _{\bullet }(\omega ) \right| \ge a, \text{ if } \omega \in I_{\bullet }, \qquad \left| \varPhi _{j,k}(\omega ) \right| \ge a, \text{ if } \omega \in I_{j,k} \end{aligned}$$

and the constant a does not depend on jk. Then

$$\begin{aligned} \frac{\left| \varPhi _{\bullet }(\omega ) \right| ^2}{\left( 1+|\omega | \right) ^{2s}}+ \sum _{j,k\in \varGamma } \frac{2^{2js}}{\left( 1+|\omega | \right) ^{2s}} |\varPhi _{j,k}(\omega )|^2 \ge C_s a^2, \quad \text{ a.e. } \omega \in \mathbb {R}^d\;, \end{aligned}$$
(50)

with a constant \(C_s\) which depends on s only and is uniform with respect to \(\omega \).

Proof

For \(s=0\), the statement is trivial while for general s, notice that

$$\begin{aligned} (1+|\omega |)\asymp 2^j, \qquad \omega \in I_{j,k}, \end{aligned}$$

while if \(\omega \in I_{\bullet }\), then \((1+|\omega |)\asymp 1\). \(\square \)

Remark A.1

Inequality (50) could be used as hypothesis on the window function weaker then ours. Since it is quite cumbersome to be checked, we prefer to work with a more transparent assumption.

We state now the counterpart of Lemmas A.4 and A.5 in the framework of seminorm discretisation.

Lemma A.7

Let \(s\ge 0\) and \(\varphi \) such that \(\varPhi _{j,k}(\omega )\) satisfies hypothesis (39). We define

$$\begin{aligned} \widetilde{\varphi _{j,k,\lambda }}(t)&=\frac{1}{2^{jd/2}} T_{2^{-j}\lambda } {\text {F}}^{-1}_{\omega \mapsto t}\left( \frac{2^{js}}{|\omega |^s} \varPhi _{j,k}(\omega ) \right) (t), \quad j\in {\mathbb {N}}\nonumber \\ \widetilde{\varphi _{-j,k,\lambda }}(t)&= \frac{1}{2^{jd/2}} T_{{\lambda }{2^j}} {\text {D}}_{2^{2j}} {\text {F}}^{-1}_{\omega \mapsto t}\left( \frac{2^{js}}{|\omega |^s} \varPhi _{j,k}(\omega ) \right) (t), \quad j\in {\mathbb {N}}{\setminus } \left\{ 0 \right\} \end{aligned}$$
(51)

then, for all \(\nu \in (0,1]\) and jk the system of functions \( \left\{ \widetilde{\varphi _{j,k,\lambda }}(t) \right\} _{\lambda \in \nu {\mathbb {Z}}} \) is a Bessel sequence uniformly in jk, that is

$$\begin{aligned} \sum _{\lambda \in \nu {\mathbb {Z}}} \left| \left\langle \widetilde{\varphi _{j,k,\lambda }}, f\right\rangle \right| ^2\le C_\nu \left\| f \right\| ^2_{L^2(\mathbb {R}^d)} \end{aligned}$$
(52)

with \(C_\nu \) independent on jk.

Lemma A.8

Let \(\varPhi _{j,k}\), \(\widetilde{\varphi _{j,k,\lambda }}\) as in Lemma A.7 and \(E_{j,k}\) as in (13) for \(j\in {\mathbb {N}}\) and as

$$\begin{aligned} E_{-j, k}=\left\{ x\in \mathbb {R}\mid 2^{2j} x\in E_{j,k} \right\} \end{aligned}$$

for negative integers. If \(\nu \in (0,1]\) and \( {\text {supp}}\widehat{f} \cap E_{j,k} =\emptyset , \) then

$$\begin{aligned} \sum _{\lambda \in \nu {\mathbb {Z}}} \left| \left\langle \widetilde{\varphi _{j,k,\lambda }}, f\right\rangle \right| ^2\le \frac{C_\nu }{\left| 2^j \right| ^{(2\alpha -d)}} \left\| f \right\| ^2_{L^2(\mathbb {R}^d)} \end{aligned}$$
(53)

with \(C_\nu \) independent on jk.

Proof of Lemmas A.7, A.8

If \(j\in {\mathbb {N}}\) the proofs for is the same of Lemmas A.4 and A.5. In order to prove Lemma A.7 for \(-j\) with \(j\in {\mathbb {N}}{\setminus } \left\{ 0 \right\} \), we use the following relation

$$\begin{aligned} \sum _{\lambda \in \nu {\mathbb {Z}}} \left| \left\langle \widetilde{\varphi _{-j,k,\lambda }}, f\right\rangle \right| ^2= \sum _{\lambda \in \nu {\mathbb {Z}}} \left| \left\langle {\text {D}}_{2^{2j}} T_{\frac{\lambda }{ 2^j}} \widetilde{\varphi _{j,k,0 }}, f\right\rangle \right| ^2 =\sum _{\lambda \in \nu {\mathbb {Z}}} \left| \left\langle T_{ \frac{\lambda }{ 2^j} } \widetilde{\varphi _{j,k,0 }}, {\text {D}}_{2^{-2j}}{f}\right\rangle \right| ^2 \end{aligned}$$

and the fact that \(\left\| {\text {D}}_{2^{-2j}} f \right\| _{L^2(\mathbb {R}^d)}= \left\| f \right\| _{L^2(\mathbb {R}^d)}\). For Lemma A.8 notice also that \( {\text {supp}}\widehat{f} \cap E_{-j,k}=\emptyset \) implies \( {\text {supp}}\widehat{{\text {D}}_{2^{-2j}} f}\cap E_{j,k}=\emptyset . \) \(\square \)

Interpolation techniques

We define a multi-resolution partition using the notation of [8]. Then, we adapt the interpolation result to our specific case.

Set \(V=L^2(\mathbb {R}), Z = H^1(\mathbb {R})\) and let

$$\begin{aligned} V_{\overline{j}} = \text {span}\left\{ \varphi _{j,k,\lambda } \right\} _{{j}\le \overline{j}} \end{aligned}$$
(54)

where \(\left\{ \varphi _{j,k,\lambda }\mid j, k, \lambda \in \varDelta \right\} \) is the frame defined as in (27). We also define the related projectors

$$\begin{aligned} \begin{aligned} P_{\,\overline{j}}{:}\,L^2&\longrightarrow V_j \\ v&\longmapsto \sum _{j\le {\overline{j}}, k,\lambda }\langle \varphi _{j,k,\lambda },v \rangle \varphi ^D_{j,k,\lambda }, \end{aligned} \end{aligned}$$
(55)

where \(\varphi ^D_{j,k,\lambda }\) is the dual window. By definition

$$\begin{aligned} \ldots V_{-j-1} \subseteq V_{-j} \subseteq \cdots \subseteq V_1 \subseteq \cdots \subseteq V_j \subseteq V_{j+1} \cdots \subseteq L^2(\mathbb {R}) \end{aligned}$$
(56)

and also \(V_j \subseteq H^s(\mathbb {R}^d), j\in {\mathbb {Z}}\). Finally, we notice that due to our definition

$$\begin{aligned} \lim _{j\rightarrow -\infty }P_j = 0. \end{aligned}$$
(57)

Lemma B.9

Let \(r\in {\mathbb {Z}}\), then the following inequalities hold.

$$\begin{aligned} |v|_{r} \lesssim 2^{\overline{j}r}\left\| v \right\| , \quad \forall {v\in V_{\overline{j}}}, \quad \overline{j}\in {\mathbb {Z}}\quad {\text {(Bernstein)}} \end{aligned}$$
(58)

and

$$\begin{aligned} \left\| v-P_{\overline{j}}(v) \right\| \lesssim 2^{-\overline{j}r}\left| v \right| _r \quad \forall {v\in V_{\overline{j}}}, \quad \overline{j}\in {\mathbb {Z}}\quad {\text {(Jackson).}} \end{aligned}$$
(59)

Proof

This follows immediately from Theorem 3.4 and a few observations. We notice that we can write the Sobolev seminorm as

$$\begin{aligned} |v|_r = \left\| v^{(r)} \right\| _2, \end{aligned}$$

where \(v^{(r)}\) is the rth derivative of v. We also notice that if \(\left\{ \varphi _{j,k,\lambda } \right\} _{j,k,\lambda \in \varGamma }\) is a frame for \(H^r\), then \(\left\{ 2^{-jr}\varphi _{j,k,\lambda }^{(r)} \right\} _{j,k,\lambda \in \varGamma }\) is a frame for \(L^2\). Indeed,

$$\begin{aligned} 2^{-jr}\widehat{\varphi _{j,k,\lambda }^{(r)}}(\xi ) = 2^{-jr}e^{-2\pi \mathrm {i}\,\omega \cdot 2^{-j}\lambda } |\xi |^r \varPhi _{j,k}(\xi ). \end{aligned}$$

and the frequency window

$$\begin{aligned} \widetilde{\varPhi _{j,k}}(\xi ) = 2^{-jr}|\xi |^r \varPhi _{j,k}(\xi ), \end{aligned}$$

clearly satisfies the requirements of Definition 3.3 and thus yields a frame, as claimed.

Hence, we can represent the rth derivative of the function v as

$$\begin{aligned} v^{(r)} = \sum _{j<\overline{j},k,\lambda }2^{jr}\langle v,2^{-jr}\varphi _{j,k,\lambda }^{(r)}\rangle \varphi _{j,k,\lambda }^D. \end{aligned}$$

Finally, using the minimal property of the frame coefficients, see [16, Proposition 5.1.4.],

$$\begin{aligned} |v|^2_s \lesssim \sum _{j<\overline{j},k,\lambda \in \varDelta } 2^{2js}\left| \left\langle v, \varphi _{j,k,\lambda }\right\rangle \right| ^2 \le 2^{2\overline{j}s}\sum _{j<\overline{j},k,\lambda \in \varDelta }\left| \left\langle v, \varphi _{j,k,\lambda }\right\rangle \right| ^2 \le 2^{2\overline{j}s}\left\| v \right\| , \end{aligned}$$

as desired.

To prove Jackson’s inequality, notice that, using again the minimal property of the frame coefficients,

$$\begin{aligned} \left\| v-P_{\overline{j}}(v) \right\| ^2 \lesssim \sum _{j>\overline{j},k,\lambda \in \varDelta }\left| \left\langle f, \varphi _{j,k,\lambda }\right\rangle \right| ^2\le & {} 2^{-2\overline{j}s}\sum _{j>\overline{j},k,\lambda \in \varDelta }2^{2\overline{j}s}\left| \left\langle f, \varphi _{j,k,\lambda }\right\rangle \right| ^2\\\le & {} 2^{-2\overline{j}s}|v|^2_s, \end{aligned}$$

and this concludes the proof. \(\square \)

We now review Theorem 1 in [8] adapting it to our framework.

Theorem B.1

Consider the spaces \(V_j\) and the associated partitions \(P_j\) that satisfies (57) and Jackson–Bernstein inequalities. Then, for any \(0<\alpha <1, q>1\) one has

$$\begin{aligned} (L^2,H^1)_{\alpha ,q} = \left\{ v\in L^2 \mid \left| v \right| _{\alpha ,q} = \left[ \sum _{j\in {\mathbb {Z}}}2^{j\alpha q}\left( \sum _{k,\lambda \in \varDelta _j}\left| \left\langle \varphi _{j,k,\lambda }, v\right\rangle \right| ^2 \right) ^{q/2} \right] ^{1/q}<\infty \right\} , \end{aligned}$$

and a norm for this space is \(\left\| \cdot \right\| = \left\| \cdot \right\| _2 + \left| \cdot \right| _{\alpha ,q}\).

Proof

The hypothesis of [8, Theorem 1] are fulfilled, hence the result follows. \(\square \)

Remark 9

The same result holds if we interchange the role of the window function and its dual.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battisti, U., Berra, M. & Tabacco, A. Stockwell-like frames for Sobolev spaces. J. Pseudo-Differ. Oper. Appl. 9, 701–734 (2018). https://doi.org/10.1007/s11868-018-0259-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-018-0259-7

Keywords

Mathematics Subject Classification

Navigation