Skip to main content
Log in

Relative entropy tuples, relative u.p.e. and c.p.e. extensions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Relative entropy tuples both in topological and measure-theoretical settings, relative uniformly positive entropy (rel.-u.p.e.) and relative completely positive entropy (rel.-c.p.e.) are studied. It is shown that a relative topological Pinsker factor can be deduced by the smallest closed invariant equivalence relation containing the set of relative entropy pairs. A relative disjointness theorem involving relative topological entropy is proved. Moreover, it is shown that the product of finite rel.-c.p.e. extensions is also rel.-c.p.e..

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Blanchard, Fully positive topological entropy and topological mixing, in Symbolic Dynamics and its Applications, Contemporary Mathematics 135 (1992), 95–105.

  2. F. Blanchard, A disjointness theorem involving topological entropy, Bulletin de la Société Mathématique de France 121 (1993), 465–478.

    MATH  MathSciNet  Google Scholar 

  3. F. Blanchard, E. Glasner and B. Host, A variation on the variational principle and applications to entropy pairs, Ergodic Theory and Dynamical Systems 17 (1997), 29–43.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Blanchard, B. Host and S. Ruette, Asymptotic pairs in positive-entropy systems, Ergodic Theory and Dynamical Systems 22 (2002), 671–686.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Blanchard and Y. Lacroix, Zero-entropy factors of topological flows, Proceedings of the American Mathematical Society 119 (1993), 985–992.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Blanchard, B. Host, A. Maass, S. Martínez and D. Rudolph, Entropy pairs for a measure, Ergodic Theory and Dynamical Systems 15 (1995), 621–632.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spacesw, Lecture Notes in Mathematics 527, Springer-Verlag, New York, 1976.

    Google Scholar 

  8. T. Downarowicz and J. Serafin, Fiber entropy and conditional variational principles in compact non-metrizable spaces, Fundamenta Mathematicae 172 (2002), 217–247.

    MATH  MathSciNet  Google Scholar 

  9. D. Dou, X. Ye and G. H. Zhang, Entropy sequences and maximal entropy sets, Nonlinearity 19 (2006), 53–74.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Mathematical Systems Theory 1 (1967), 1–49.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Glasner, A simple characterization of the set of μ-entropy pairs and applications, Israel Journal of Mathematics 102 (1997), 13–27.

    MATH  MathSciNet  Google Scholar 

  12. E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs 101, American Mathematical Society, Providence, RI, 2003.

    MATH  Google Scholar 

  13. E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity 6 (1993), 1067–1075.

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Glasner and B. Weiss, Topological entropy of extensions, in Ergodic Theory and its Connections with Harmonic Analysis, Cambridge University Press, 1995, pp. 299–307.

  15. E. Glasner and B. Weiss, Locally equicontinuous dynamical systems, Colloquium Mathematicum 84–85 (2000), 345–361.

    MathSciNet  Google Scholar 

  16. E. Glasner and B. Weiss, On the interplay between measurable and topological dynamics, in Handbook of Dynamical Systems, Vol. 1B (Hasselblatt and Katok, eds.), Elsevier, 2006, pp. 597–648.

  17. W. Huang, S. Shao and X. Ye, Mixing via sequence entropy, in Algebraic and topological dynamis, Contemporary Mathematics 358, American Mathematical Society, Providence, RI, 2005, pp. 101–122.

    Google Scholar 

  18. W. Huang and X. Ye, Topological complexity, return times and weak disjointness, Ergodic Theory and Dynamical Systems 24 (2004), 825–846.

    Article  MATH  MathSciNet  Google Scholar 

  19. W. Huang and X. Ye, A local variational relation and applications, Israel Journal of Mathematics 151 (2006), 237–279.

    MathSciNet  MATH  Google Scholar 

  20. W. Huang, X. Ye and G. H. Zhang, A local variational principles for conditional entropy, Ergodic Theory and Dynamical Systems 26 (2006), 219–245.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Lemanczyk and A. Siemaszko, A note on the existence of a largest topological factor with zero entropy, Proceedings of the American Mathematical Society 129 (2001), 475–482.

    Article  MATH  MathSciNet  Google Scholar 

  22. F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, Journal of the London Mathematical Society (2) 16 (1977), 568–576.

    Article  MATH  MathSciNet  Google Scholar 

  23. W. Parry, Topics in Ergodic Theory, Cambridge Tracts in Mathematics 75, Cambridge University Press, Cambridge-New York, 1981.

    MATH  Google Scholar 

  24. K. K. Park and A. Siemaszko, Relative topological Pinsker factors and entropy pairs, Monatshefte für Mathematik 134 (2001), 67–79.

    Article  MATH  MathSciNet  Google Scholar 

  25. V. A. Rohlin, On the fundamental ideas of measure theory, Matematicheskii Sbornik (N. S.) 25(67) 1 (1949), 107–150; English Translation: American Mathematical Society Translations (1) 10(1962), 1–54.

    MathSciNet  Google Scholar 

  26. P. Romagnoli, A local variational principle for the topological entropy, Ergodic Theory and Dynamical Systems 23 (2003), 1601–1610.

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79, Springer-Verlag, New York-Berlin, 1982.

    MATH  Google Scholar 

  28. G. H. Zhang, Relative entropy, asymptotic pairs and chaos, Journal of the London Mathematical Society(2) 73 (2006), 157–172.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author is partially supported by NCET, NNSF of China (no. 10401031) and CNRS-K.C.Wong Fellowship.

The second author is supported by the national key project for basic science (973).

The third author is supported by NNSF of China (no. 10401031).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Ye, X. & Zhang, G. Relative entropy tuples, relative u.p.e. and c.p.e. extensions. Isr. J. Math. 158, 249–283 (2007). https://doi.org/10.1007/s11856-007-0013-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-007-0013-y

Keywords

Navigation