Skip to main content
Log in

Solar-grade silicon production by metallothermic reduction

  • Overview
  • Characterization of Next-Generation Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Various types of processes for solargrade silicon (SOG-Si) production/purification have been developed with the aim of overcoming the low productivity of the Siemens process. These processes can be divided into three groups: decomposition and/or hydrogen reduction of silane gases by improving the currently used commercial processes; purification of metallurgical-grade silicon using metallurgical purification methods; and metallothermic reduction of silicon halides by metal reductants such as zinc and aluminum. This paper reviews the features of various SOG-Si production processes, particularly the processes based on metallothermic reduction, by classifying them according to the types of reductants and the silicon compounds used. Prospects for development of new processes for producing high-purity silicon are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schweickert, K. Reuschel, and H. Gutsche, “Production of High-purity Semiconductor Materials,” U.S. patent 3,011,877 (5 December 1961).

  2. H. Gutsche, “Method for Producing Highest-purity Silicon for Electric Semiconductor Devices,” U.S. patent 3,042,494 (3 July 1962).

  3. K. Yasuda, K. Morita, and T.H. Okabe, J. MMIJ, 126(4–5) (2010), pp. 115–123.

    CAS  Google Scholar 

  4. T. Uriu, Denki Kagaku, 34(4) (1966), pp. 298–308.

    Google Scholar 

  5. E. Spenke and W. Heywang, Phys. Stat. Sol. A, 64(1) (1981), pp. 11–44.

    Article  CAS  Google Scholar 

  6. J. Dietl, D. Helmreich, and E. Sirtl, Silicon/Crystals: Growth, Properties, and Applications (New York: Springer-Verlag, 1981), pp. 43–107.

    Google Scholar 

  7. J. Moriyama, Suiyokwai-Shi, 20(8) (1987), pp. 473–477.

    CAS  Google Scholar 

  8. J. Moriyama, Suiyokwai-Shi, 20(9) (1987), pp. 597–605.

    CAS  Google Scholar 

  9. J. Moriyama, Suiyokwai-Shi, 20(10) (1988), pp. 671–679.

    CAS  Google Scholar 

  10. J. Moriyama, Suiyokwai-Shi, 21(1) (1989), pp. 52–58.

    CAS  Google Scholar 

  11. J. Moriyama, Suiyokwai-Shi, 21(3) (1990), pp. 195–200.

    CAS  Google Scholar 

  12. W.C. O’Mara, R.B. Herring, and L.P. Hunt, editors, Handbook of Semiconductor Silicon Technology (Park Ridge: Noyes Publications, 1990).

    Google Scholar 

  13. Handotai Kiban Gijyutsu Kenkyukai, editors, Silicon no Kagaku (Chemistry of Silicon) (Tokyo: Realize Riko Center, 1992).

    Google Scholar 

  14. F. Habashi, editor, Handbook of Extractive Metallurgy (Weinheim: Wiley-VCH Publication, 1997), Vol. IV, Chap. 48, pp. 1861–1984.

    Google Scholar 

  15. M. Kuramoto, Kinzoku, 69(11) (1999), pp. 935–942.

    Google Scholar 

  16. P. Woditsch and W. Koch, Solar Ener. Mater. Solar Cells, 72(1–4) (2002), pp. 11–26.

    Article  CAS  Google Scholar 

  17. M. Takeshita, H. Ito, and Y. Hanaue, J. MMIJ, 123(12) (2007), pp. 704–706.

    Article  CAS  Google Scholar 

  18. K. Morita and T. Yoshikawa, Materia, 46(3) (2007), pp. 133–136.

    CAS  Google Scholar 

  19. Y. Tamaura et al., editors, Taiyo Energy Yuko Riyo Saizensen (Frontier of Effective Use of Solar Energy) (Tokyo: NTS Inc., 2008).

    Google Scholar 

  20. I. Barin, Thermochemical Data of Pure Substances, 3rd ed. (Weinheim: VCH, 1995).

    Book  Google Scholar 

  21. D.W. Lyon, C.M. Olson, and E.D. Lewis, J. Electrochem. Soc., 96(6) (1949), pp. 359–363.

    Article  CAS  Google Scholar 

  22. L. Bertrand, “Production of Silicon,” U.S. patent 3,012,862 (12 December 1961).

  23. K.H. Butler and C.M. Olson, “Process for the Production of Pure Silicon in a Coarse Crystalline Form,” U.S. patent 2,773,745 (11 December 1956).

  24. C.M. Olson, “Preparation of Pure Silicon,” U.S. patent 2,804,377 (27 August 1957).

  25. E.R. Johnson and J.A. Amick, J. Appl. Phys., 25(9) (1954), pp. 1204–1205.

    Article  CAS  Google Scholar 

  26. T. Ishino and A. Matsumoto, Kogyo Kagaku Zasshi, 68(2) (1965), pp. 265–268.

    CAS  Google Scholar 

  27. J.M. Blocher Jr., M.F. Browning, and D.A. Seifert, “Evaluation of Selected Chemical Processes for Production of Low-cost Silicon,” DOE/JPL Report 954339-81/21 (31 March 1981).

  28. D.A. Seifert and M.F. Browning, AIChE Symp. Ser., 78(216) (1982), pp. 104–115.

    CAS  Google Scholar 

  29. Y. Natsume, K. Kaneko, and T. Ogasawara, “Method for Producing High-purity Silicon,” Japanese patent application H11-92130 (6 April 1999).

  30. T. Shimamune and I. Yoshikawa, “Method for Producing Polycrystalline Silicon,” Japanese patent application H15-342016 (3 December 2003).

  31. E. Robert and T. Zijlema, “Process for the Production of Si by Reduction of SiCl4 with Liquid Zn,” PCT International patent WO2006/100114 (28 September 2006).

  32. S. Honda, M. Yasueda, S. Hayashida, and M. Yamaguchi, “Process for the Production of High-purity Polycrystalline Silicon,” Japanese patent application H19-145663 (14 June 2007).

  33. S. Sakaguchi, “Method and Apparatus for Producing Silicon,” PCT International patent WO2007/119605 (25 October 2007).

  34. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, editors, Binary Alloy Phase Diagrams, 2nd ed. (Metals Park, Ohio: ASM International, 1990).

    Google Scholar 

  35. Nihon Keizai Shimbun Newspaper, “Polycrystalline Si Production Business Started by Nippon Mining Holdings, Chisso, and Toho Titanium” (28 May 2008).

  36. V.M. Weaver, “Process of Winning Metals,” U.S. patent 1,238,604 (28 August 1917).

  37. S. Yoshizawa, T. Hatano, and S. Sakaguchi, Kogyo Kagaku Zasshi, 64(8) (1961), pp. 1347–1350.

    CAS  Google Scholar 

  38. J.C. Terry, A. Lippman, R.F. Sebenik, and H.G. Harris, “Reduction of Metallic Chloride by Powdered Metal,” Canadian patent 1,003,223 (11 January 1977).

  39. P. Woditsch, M. Abels, and B. Brazel, “Process for the Production of Silicon,” U.S. patent 4,525,334 (25 June 1985).

  40. K. Saegusa and T. Yamabayashi, “Method for Producing Highly Pure Silicon,” PCT International patent WO2007/001093 (4 January 2007).

  41. T. Yoshikawa and K. Morita, Sci. Technol. Adv. Mater., 4(6) (2003), pp. 531–537.

    Article  CAS  Google Scholar 

  42. K. Morita, T.H. Okabe, and M. Maeda, Chuzo Kogaku (J. Jpn. Foundry Eng. Soc.), 80(6) (2008), pp. 375–379.

    CAS  Google Scholar 

  43. J.R. Davis, Jr., A. Rohatgi, R.H. Hopkins, P.D. Blais, P. Rai-Choudhury, J.R. McCormick, and H.C. Mollenkopf: IEEE Trans. Electron Devices, ED-27(4) (1980), pp. 677–687.

    Article  CAS  Google Scholar 

  44. N. Yuge, M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S. Hiwasa, and F. Aratani, Prog. Photovolt. Res. Appl., 9 (2001), pp. 203–209.

    Article  CAS  Google Scholar 

  45. N. Yuge, K. Hanazawa, S. Hisawa, and Y. Kato, Nippon Kinzoku Gakkaishi, 67(10) (2003), pp. 575–582.

    CAS  Google Scholar 

  46. A.C. Vournasos, Z. Anorg. Chem., 81 (1913), pp. 364–368.

    Article  CAS  Google Scholar 

  47. R.S. Aries, “Production of Pure Silicon,” U.S. patent 3,041,145 (26 June 1962).

  48. B. Kamenar and D. Grdenic, Z. Anorg Allg. Chem., 321 (1963), pp. 113–119.

    Article  CAS  Google Scholar 

  49. M.G. Fey, F.J. Harvey, and J. McDonald, “Arc Heater Production of Silicon Involving Alkali or Alkaline-earth Metals,” U.S. patent 4,102,765 (25 July 1978).

  50. R.A. Frosch and A.R. Keeton, “Sodium Storage and Injection System,” U.S. patent 4,169,129 (25 September 1979).

  51. R.A. Frosch, C.B. Wolf, and T.N. Meyer, “Method of Producing Silicon,” U.S. patent 4,188,368 (12 February 1980).

  52. J. Eringer, “Process for Obtaining Silicon from Its Compounds,” U.S. patent 2,172,969 (12 September 1939).

  53. A. Sanjurjo, L. Nanis, K. Sancier, R. Bartlett, and V. Kapur, J. Electrochem. Soc., 128(1) (1981), pp. 179–184.

    Article  CAS  Google Scholar 

  54. A. Sanjurjo, “Process and Apparatus for Obtaining Silicon from Fluosilicic Acid,” PCT international patent WO1983/002443 (21 July 1983).

  55. F.A. Schmidt, D. Rehbein, and P. Chiotti, “Method of Preparing Silicon from Sodium Fluosilicate,” U.S. patent 4,446,120 (1 May 1984).

  56. N. Auner, “Method for Producing Silicon,” PCT international patent WO2003/059814 (24 July 2003).

  57. T. Watanabe, editor, Encyclopedia of the Elements (Tokyo: Asakura Publications, 2007).

    Google Scholar 

  58. H. Morito, T. Yamada, T. Ikeda, and H. Yamane, J. Alloy. Compd., 480(2) (2009), pp. 723–726.

    Article  CAS  Google Scholar 

  59. W.J. Kroll, Trans. Am. Electrochem. Soc., 78 (1940), pp. 35–47.

    Google Scholar 

  60. T.H. Okabe and K. Saegusa, “Method for Producing Silicon,” Japanese patent application H21-091228 (30 April 2009).

  61. K. Yasuda, K. Saegusa, and T.H. Okabe, Mater. Trans., 50(12) (2009), pp. 2873–2878.

    Article  CAS  Google Scholar 

  62. K. Yasuda, K. Saegusa, and T.H. Okabe, Metall. Mater. Trans B., published on-line (15 Oct. 2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru H. Okabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasuda, K., Okabe, T.H. Solar-grade silicon production by metallothermic reduction. JOM 62, 94–101 (2010). https://doi.org/10.1007/s11837-010-0190-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0190-8

Keywords

Navigation