Skip to main content

Advertisement

Log in

Solvent selection for CO2 capture from gases with high carbon dioxide concentration

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Amine absorption processes are widely used to purify both refinery and process gases and natural gas. Recently, amine absorption has also been considered for application to CO2 removal from flue gases. It has a number of advantages, but there is one major disadvantage-high energy consumption. This can be solved by using an appropriate solvent. From a group of several dozen solutions, seven amine solvents based on primary amine, tertiary amine and sterically hindered amine were selected. For the selected solutions research was conducted on CO2 absorption capacity, an absorption rate and finally a solvent vapor pressure. Furthermore, tests on an absorber-desorber system were also performed. In this study the most appropriate solvent for capturing CO2 from flue gases with higher carbon dioxide concentrations was selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Krótki, L. Więcław-Solny, A. Tatarczuk, M. Stec, A. Wilk, D. Spiewak and T. Spietz, Arab. J. Sci. Eng., 41, 2 (2016).

    Article  Google Scholar 

  2. S. Rackley, Carbon Capture and Storage, Gulf Professional Publishing (2009).

    Google Scholar 

  3. C. L. Spash, Environ. Values, 16, 4 (2007).

    Article  Google Scholar 

  4. L. Wieclaw-Solny, M. Sciazko, A. Tatarczuk, A. Krótki and A. Wilk, Polityka Energy, 14, 441 (2011).

    Google Scholar 

  5. S. Chowdhury and M. Al-Zahrani, Arab._J. Sci. Eng., 38, 8 (2013).

    Google Scholar 

  6. P. Feron, Absorption-Based Post-Combustion Capture of Carbon Dioxide, Woodhead Publishing (2016).

    Google Scholar 

  7. M. Stec, A. Tatarczuk, L. Wieclaw-Solny, A. Krótki, T. Spietz, A. Wilk and D. Spiewak, Clean Technol. Environ. Policy, 18, 1 (2016).

    Article  Google Scholar 

  8. D. Gielen, Energy Convers. Manage., 44, 7 (2003).

    Article  Google Scholar 

  9. Flue Gas Analysis in Industry. Practical guide for Emission and Process Measurements, 2nd Ed., Testo Inc. (n.d.).

  10. A. Bosoaga, O. Masek and J. E. Oakey, Energy Procedia, 1, 1 (2009).

    Article  Google Scholar 

  11. H. Tran, Lime kiln chemistry and effects on kiln operations, in: TAPPI Kraft Recovery Course, Red Hook, 114 (2007).

    Google Scholar 

  12. M. Eriksson, B. Hökfors and R. Backman, Energy Sci. Eng., 2, 4 (2014).

    Article  Google Scholar 

  13. G.V. Last and M.T. Schmick, Identification and Selection of Major Carbon Dioxide Stream Compositions, Pacific Northwest National Laboratory, Oak Ridge (2011).

    Book  Google Scholar 

  14. K. Warmuzinski, M. Tanczyk, M. Jaschik and A. Janusz-Cygan, Polityka Energy, 14, 2 (2011).

    Google Scholar 

  15. A. Skorek-Osikowska, J. Kotowicz and K. Janusz-Szymanska, Energy Fuels, 26(11), 6509 (2012).

    CAS  Google Scholar 

  16. T. Spietz, L. Wieclaw-Solny, A. Tatarczuk, A. Krótki and M. Stec, Chemik, 68, 10 (2014).

    Google Scholar 

  17. M. Wang, A. Lawal, P. Stephenson, J. Sidders and C. Ramshaw, Chem. Eng. Res. Des., 89, 9 (2011).

    Google Scholar 

  18. T. Chmielniak, Polityka Energy, 13, 2 (2010).

    Google Scholar 

  19. A. Kohl and R. Nielsen, Gas purification-5th Ed., Gulf Publishing Company, Houston, U.S.A. (1997).

    Google Scholar 

  20. B. Lv, B. Guo, Z. Zhou and G. Jing, Environ. Sci. Technol., 49, 17 (2015).

    Article  Google Scholar 

  21. P. Luis, Desalination, 380, 93 (2016).

    Article  CAS  Google Scholar 

  22. K. Li, A. Cousins, H. Yu, P. Feron, M. Tade, W. Luo and J. Chen, Energy Sci. Eng., 4, 1 (2016).

    Article  Google Scholar 

  23. T.C. Drage, A. Arenillas, K.M. Smith, C. Pevida, S. Piippo and C. E. Snape, Fuel, 86, 1 (2007).

    Article  Google Scholar 

  24. C. Gouedard, D. Picq, F. Launay and P.-L. Carrette, Int. J. Greenh. Gas Control, 10, 244 (2012).

    Article  CAS  Google Scholar 

  25. J. Davis and G. Rochelle, Energy Procedia, 1, 1 (2009).

    Article  Google Scholar 

  26. B. Fostås, A. Gangstad, B. Nenseter, S. Pedersen, M. Sjøvoll and A. L. Sørensen, Energy Procedia, 4, 1566 (2011).

    Article  Google Scholar 

  27. G. Fytianos, A. Grimstvedt, H. Knuutila and H. F. Svendsen, Energy Procedia, 63, 1869 (2014).

    Article  CAS  Google Scholar 

  28. R. S. Alvis, N. A. Hatcher and R. H. Weiland, CO2 removal from syngas using piperazine-activated MDEA and potassium dimethyl glycinate, in: Athens, Greece (2012).

    Google Scholar 

  29. The Contactor, 2, 4 (2008).

  30. M. Iijima, T. Nagayasu, T. Kamijyo and S. Nakatani, Mitsubishi Heavy Ind. Tech. Rev., 48, 26 (2011).

    Google Scholar 

  31. T. Kamijo, Y. Kajiya, T. Endo, H. Nagayasu, H. Tanaka, T. Hirata, T. Yonekawa and T. Tsujiuchi, Energy Procedia, 37, 1793 (2013).

    Article  CAS  Google Scholar 

  32. R. Mitchell, Carbon Capture J., 1, 3 (2008).

    Google Scholar 

  33. F. Barzagli, S. Lai and F. Mani, Energy Procedia, 63, 1795 (2014).

    Article  CAS  Google Scholar 

  34. J. Yang, X. Yu, J. Yan and S.-T. Tu, Ind. Eng. Chem. Res., 53, 7 (2014).

    Google Scholar 

  35. S. Murai, Y. Kato, Y. Maezawa, T. Muramatsu and S. Saito, Energy Procedia, 37, 417 (2013).

    Article  CAS  Google Scholar 

  36. F.A. Chowdhury, H. Yamada, Y. Matsuzaki, K. Goto, T. Higashii and M. Onoda, Energy Procedia, 63, 572 (2014).

    Article  CAS  Google Scholar 

  37. F.A. Chowdhury, H. Okabe, S. Shimizu, M. Onoda and Y. Fujioka, Energy Procedia, 1, 1 (2009).

    Article  Google Scholar 

  38. F.A. Chowdhury, H. Yamada, T. Higashii, K. Goto and M. Onoda, Ind. Eng. Chem. Res., 52, 24 (2013).

    Google Scholar 

  39. L. Cao, H. Dong, X. Zhang, S. Zhang, Z. Zhao, S. Zeng and J. Gao, J. Chem. Technol. Biotechnol., 90, 10 (2015).

    Google Scholar 

  40. A. Wilk, L. Wieclaw-Solny, A. Tatarczuk, D. Spiewak and A. Krótki, Przem. Chem., 92, 1 (2013).

    Google Scholar 

  41. A. Krótki, D. Spiewak, M. Stec, L. Wieclaw-Solny and A. Wilk, Przem. Chem., 93, 8 (2014).

    Google Scholar 

  42. L. Wieclaw-Solny, A. Tatarczuk, A. Krótki, A. Wilk and D. Spiewak, Polityka Energy, 15, 4 (2012).

    Google Scholar 

  43. A. L. Kohl, Gas Purification, Fifth Edition, 5. Ed., Gulf Professional Publishing, Houston, Tex (1997).

    Google Scholar 

  44. H. L. Simmons and R. J. Levis, Building Materials: Dangerous Properties of Products in MasterFormat Divisions 7 and 9, John Wiley & Sons (1997).

    Google Scholar 

  45. R. Lajnert and B. Latkowska, Przem. Chem., 92, 2 (2013).

    Google Scholar 

  46. M. Stec, A. Tatarczuk, L. Wieclaw-Solny, A. Krótki, M. Sciazko and S. Tokarski, Fuel, 151, 50 (2015).

    Article  CAS  Google Scholar 

  47. D. Spiewak, A. Krótki, T. Spietz, M. Stec, L. Wieclaw-Solny, A. Tatarczuk and A. Wilk, Chem. Process Eng., 36, 1 (2015).

    Article  Google Scholar 

  48. J.N. Knudsen, J. N. Jensen, P.-J. Vilhelmsen and O. Biede, Energy Procedia, 1, 1 (2009).

    Article  Google Scholar 

  49. Y. Artanto, J. Jansen, P. Pearson, T. Do, A. Cottrell, E. Meuleman and P. Feron, Fuel, 101, 264 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Wilk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilk, A., Więcław-Solny, L., Tatarczuk, A. et al. Solvent selection for CO2 capture from gases with high carbon dioxide concentration. Korean J. Chem. Eng. 34, 2275–2283 (2017). https://doi.org/10.1007/s11814-017-0118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0118-x

Keywords

Navigation