Skip to main content
Log in

Study on the activity coefficients and solubilities of amino acids in aqueous solutions with perturbed-chain statistical associating fluid theory

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Perturbed-chain statistical associating fluid theory (PC-SAFT) was applied for modeling the thermodynamic properties of aqueous amino acid solutions. To account for the association phenomena of amino acids occurring in the aqueous solution, the zwitterionic forms of amino acids are assumed to be associating species with proton donor and acceptor sites. Also, in order to reduce the number of adjustable parameters of PC-SAFT equation of state (EoS) for amino acids from five to three, it is assumed that segment numbers of amino acids are linearly related with the molecular weight of amino acids, and the association volume parameters of amino acids can be set to a fixed value. Thus, 3-parameters of PC-SAFT EoS for amino acids were estimated by simultaneously fitting the activity coefficients of amino acid and densities data in the aqueous amino acid solutions. The PC-SAFT EoS with estimated 3-parameters of amino acid is found to well describe activity coefficients of amino acid and densities of the aqueous amino acid solutions. Also, this equation was used for predicting solubilities of amino acids as well as the water activities and osmotic coefficients in the aqueous amino acid solutions. The predicted values of these properties are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Subramanian, Bioseparations and bioprocessing vol. 1, Wiley-VCH Verlag GmbH & Co., Weinheim (2007).

    Google Scholar 

  2. M. R. Ladisch, Bioseparations engineering: Principles, practice, and economics, John Wiley & Sons, Inc., New York (2001).

    Google Scholar 

  3. K. K. Nass, AIChE J., 34, 1257 (1988).

    Article  CAS  Google Scholar 

  4. X. Xu, S. P. Pinho and E. A. Macedo, Ing. Eng. Chem. Res., 43, 3200 (2004).

    Article  CAS  Google Scholar 

  5. G. R. Pazuki and M. Nikookar, Biochem. Eng. J., 28, 44 (2006).

    Article  CAS  Google Scholar 

  6. C.-C. Chen, Y. Zhu and L. B. Evans, Biotechnol. Prog., 5, 111 (1989).

    Article  CAS  Google Scholar 

  7. A. M. Peres and E. A. Macedo, Chem. Eng. Sci., 49, 3803 (1994).

    Article  CAS  Google Scholar 

  8. R. B. Gupta and R. A. Heidemann, AIChE J., 36, 333 (1990).

    Article  CAS  Google Scholar 

  9. S. P. Pinho, C. M. Silva and E.A. Macedo, Ind. Eng. Chem. Res., 33, 1341 (1994).

    Article  CAS  Google Scholar 

  10. H. Kuramochi, H. Noritomi, D. Hoshino and K. Nagahama, Fluid Phase Equilibria, 130, 117 (1997).

    Article  CAS  Google Scholar 

  11. G.R. Pazuki, V. Taghikhani and M. Vossoughi, Ind. Eng. Chem. Res., 48, 4109 (2009).

    Article  CAS  Google Scholar 

  12. M.K. Khoshkbarchi and J.H. Vera, Ind. Eng. Chem. Res., 35, 4319 (1996).

    Article  CAS  Google Scholar 

  13. M.K. Khoshkbarchi and J.H. Vera, Ind. Eng. Chem. Res., 37, 3052 (1998).

    Article  CAS  Google Scholar 

  14. G.A. Manssori, N. F. Carnahan, K. E. Starling and T.W. Leland, JR, J. Chem. Phys., 54, 1523 (1971).

    Article  Google Scholar 

  15. J.A. Barker and D. Henderson, J. Chem. Phys., 47, 4714 (1967).

    Article  CAS  Google Scholar 

  16. J.-C. Liu, J.-F. Lu and Y.-G. Li, Fluid Phase Equilibria, 142, 67 (1998).

    Article  CAS  Google Scholar 

  17. S. Mortazavi-Manesh, C. Ghotbi and V. Taghihani, J. Chem. Thermodyn., 35, 101 (2003).

    Article  CAS  Google Scholar 

  18. C. Ghotbi and J. H. Vera, Can. J. Chem. Eng., 79, 678 (2001).

    Article  CAS  Google Scholar 

  19. G. R. Pazuki, H.R. Hosseinbeigi and M. Edalat, Fluid Phase Equilibria, 240, 40 (2006).

    Article  CAS  Google Scholar 

  20. S. Beret and J. M. Prausnitz, AIChE J., 21, 1123 (1975).

    Article  CAS  Google Scholar 

  21. B.H. Park, K.-P. Yoo and C. S. Lee, Fluid Phase Equilibira, 212, 175 (2003).

    Article  CAS  Google Scholar 

  22. . S. Yeom, K.-P. Yoo, B.H. Park and C. S. Lee, Fluid Phase Equilibria, 158–160, 143 (1999).

    Article  Google Scholar 

  23. .G. Chapman, K. E. Gubbins, G. Jackson and M. Radosz, Fluid Phase Equilibria, 52, 31 (1989).

    Article  CAS  Google Scholar 

  24. .G. Chapman, K. E. Gubbins, G. Jackson and M. Radosz, Ind. Eng. Chem. Res., 29, 1709 (1990).

    Article  CAS  Google Scholar 

  25. P. Ji, W. Feng and T. Tan, J. Chem. Thermodyn., 39, 1057 (2007).

    Article  CAS  Google Scholar 

  26. S.H. Huang and M. Madosz, Ind. Eng. Chem. Res., 30, 1994 (1991).

    Article  CAS  Google Scholar 

  27. D. Fuchs, J. Fisher, F. Tumakaka and G. Sadowski, Ind. Eng. Chem. Res., 45, 6578 (2006).

    Article  CAS  Google Scholar 

  28. J. Gross and G. Sadowski, Ind. Eng. Chem. Res., 40, 1244 (2001).

    Article  CAS  Google Scholar 

  29. L. F. Cameretti and G. Sadowski, Chem. Eng. Processing, 47, 1018 (2008).

    CAS  Google Scholar 

  30. G.A. Jeffery and W. Saenger, Hydrogen bonding in biological structures, Springer-Verlag, Berlin (1994).

    Google Scholar 

  31. T. Boublik, J. Chem. Phys., 50, 471 (1970).

    Article  Google Scholar 

  32. I. Tunon, E. Silla, C. Millot, M. T. C. Martins-Costa and M. F. Ruiz-Lopez, J. Phys. Chem. A, 102, 8673 (1998).

    Article  CAS  Google Scholar 

  33. J. Chang, A. M. Lenhoff and S. I. Sandler, J. Phys. Chem. B, 111, 2098 (2007).

    Article  CAS  Google Scholar 

  34. S. Rossi, P. L. Nostro, M. Lagi, B.W. Ninham and P. Baglioni, J. Phys. Chem. B, 111, 10510 (2007).

    Article  CAS  Google Scholar 

  35. D. Troitino, L. Bailey and F. Peral, J. Molecular Structure: THEOCHEM, 767, 131 (2006).

    Article  CAS  Google Scholar 

  36. J. P. Wolbach and S. I. Sandler, Ind. Eng. Chem. Res., 37, 2917 (1998).

    Article  CAS  Google Scholar 

  37. G. Jin and M.D. Donohue, Ind. Eng. Chem. Res., 30, 240 (1991).

    Article  CAS  Google Scholar 

  38. B. E. Poling, J. M. Prausnitz and J. P. O’Connell, The properties of gases and liquids, 5th ed., MacGraw-Hill Co., Inc., New York (2001).

    Google Scholar 

  39. B.-S. Lee and K.-C. Kim, Korean J. Chem. Eng., Accepted (2009).

  40. J. P. Greenstein and M. Winitz, Chemistry of the amino acids, vol. 1, Wiley, New York (1961).

    Google Scholar 

  41. G.D. Fasman, CRC handbook of biochemistry and molecular biology physical and chemical data, vol. 1, CRC Press, Florida (1976).

    Google Scholar 

  42. G. C. Barrett, Chemistry and biochemistry of the amino acids, Chapman and Hall, New York (1985).

    Google Scholar 

  43. A. Soto, A. Arce, M.K. Khoshkbarchi and J.H. Vera, Fluid Phase Equilibria, 158–160, 893 (1999).

    Article  Google Scholar 

  44. R. Sadeghi, Can. J. Chem., 86, 1126 (2008).

    Article  CAS  Google Scholar 

  45. L. Ninni and A. J.A. Meirelles, Biotechnol. Prog., 17, 703 (2001).

    Article  CAS  Google Scholar 

  46. Z. Yan, J. Wang, W. Liu and J. Lu, Thermochimica Acta, 334, 17 (1999).

    Article  CAS  Google Scholar 

  47. Q. Yuan, Z.-F. Li and B.-H. Wang, J. Chem. Thermodyn., 38, 20 (2006).

    Article  CAS  Google Scholar 

  48. A.W. Hakin, A.K. Copeland, J. L. Liu, R.A. Marriott and K. E. Preuss, J. Chem. Eng. Data, 42, 84 (1997).

    Article  CAS  Google Scholar 

  49. S. P. Ziemer and E.M. Woolley, J. Chem. Thermodyn., 39, 645 (2007).

    Article  CAS  Google Scholar 

  50. Y. Sembira-Nahum, A. Apelblat and E. Manzurola, J. Sol. Chem., 37, 391 (2008).

    Article  CAS  Google Scholar 

  51. T. S. Banipal, D. Kaur and P.K. Banipal, J. Chem. Eng. Data, 49, 1236 (2004).

    Article  CAS  Google Scholar 

  52. O. D. Bonner, J. Chem. Eng. Data, 27, 422 (1982).

    Article  CAS  Google Scholar 

  53. H. Kuramochi, H. Noritomi, D. Hoshino and K. Nagahama, Biotechnol. Prog., 12, 371 (1996).

    Article  CAS  Google Scholar 

  54. E. L. Sexton and M. S. Dunn, J. Phys. Chem., 51, 648 (1947).

    Article  CAS  Google Scholar 

  55. X. Z. Jin and K.-C. Chao, J. Chem. Eng. Data, 37, 199 (1992).

    Article  CAS  Google Scholar 

  56. J.O. Hutchens, K. M. Figlio and S.M. Granito, J. Biol. Chem., 238, 1419 (1963).

    CAS  Google Scholar 

  57. E. R. B. Smith and P. K. Smith, J. Biol. Chem., 117, 209 (1937).

    CAS  Google Scholar 

  58. P. K. Smith and E. R. B. Smith, J. Biol. Chem., 121, 607 (1937).

    CAS  Google Scholar 

  59. P. K. Smith and E. R. B. Smith, J. Biol. Chem., 132, 57 (1940).

    CAS  Google Scholar 

  60. H.D. Ellerton, G. Reinfelds, D. E. Mulcahy and P. J. Dunlop, J. Phys. Chem., 68, 398 (1964).

    Article  CAS  Google Scholar 

  61. T. E. Needham, A.N. Paruta and R. J. Gerraughty, J. Pharm. Sci., 60, 565 (1971).

    Article  CAS  Google Scholar 

  62. A.A. Prandhan and J.H. Vera, Fluid Phase Equilibria, 152, 121 (1998).

    Article  Google Scholar 

  63. M.G. Brown and R.W. Rousseau, Biotechnol. Prog., 10, 253 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Chang Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, BS., Kim, KC. Study on the activity coefficients and solubilities of amino acids in aqueous solutions with perturbed-chain statistical associating fluid theory. Korean J. Chem. Eng. 27, 267–277 (2010). https://doi.org/10.1007/s11814-009-0351-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0351-z

Key words

Navigation