Skip to main content
Log in

Expression pattern of Chlamys farreri sox2 in eggs, embryos and larvae of various stages

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The SOX2 protein is an important transcription factor functioning during the early development of animals. In this study, we isolated a full-length cDNA sequence of scallop Chlamys farreri sox2, Cf-sox2 which was 2194 bp in length with a 981 bp open reading frame encoding 327 amino acids. With real-time PCR analysis, it was detected that Cf-sox2 was expressed in unfertilized oocytes, fertilized eggs and all the tested embryos and larvae. The expression level increased significantly (P < 0.01) in embryos from 2-cell to blastula, and then decreased significantly (P < 0.01) and reached the minimum in umbo larva. Moreover, location of the Cf-sox2 expression was revealed using whole mount in situ hybridization technique. Positive hybridization signal could be detected in the central region of unfertilized oocytes and fertilized eggs, and then strong signals dispersed throughout the embryos from 2-cell to gastrula. During larval development, the signals were concentrated and strong signals were restricted to 4 regions of viscera mass in veliger larva. In umbo larva, weak signals could be detected in regions where presumptive visceral and pedal ganglia may be formed. The expression pattern of Cf-sox2 during embryogenesis was similar to that of mammal sox2, which implied that Cf-SOX2 may participate in the regulation of early development of C. farreri.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., and Lovell-Badge, R., 2003. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes and Development, 17(1): 126–140, DOI: 10.1101/gad.224503.

    Article  Google Scholar 

  • Bishop, C. E., Whitworth, D. J., Qin, Y., Agoulnik, A. I., Agoulnik, I. U., Harrison, W. R., Behringer, R. R., and Overbeek, P. A., 2000. A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nature Genetics, 26(4): 490–494, DOI: 10.1038/82652.

    Article  Google Scholar 

  • Bowles, J., Schepers, G., and Koopman, P., 2000. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Developmental Biology, 227(2): 239–255, DOI: 10.1006/abio.2000.9883.

    Article  Google Scholar 

  • Bylund, M., Andersson, E., Novitch, B. G., and Muhr, J., 2003. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nature Neuroscience, 6(11): 1162–1168, DOI: 10.1038/nn1131.

    Article  Google Scholar 

  • Chaboissier, M. C., Kobayashi, A., Vidal, V. I., Lützkendorf, S., van de Kant, H. J., Wegner, M., Rooij de, D. J., Behringer, R. R., and Schedl, A., 2004. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development, 131(9): 1891–1901, DOI: 10.1242/dev.01087.

    Article  Google Scholar 

  • Collignon, J., Sockanathan, S., Hacker, A., Cohen-Tannoudji, M., Norris, D., Rastan, S., Stevanovic, M., Googfellow, P. N., and Lovell-Badge, R., 1996. A comparison of the properties of Sox3 with Sry and two related genes, Sox1 and Sox2. Development, 122(2): 509–520.

    Google Scholar 

  • Cui, J., Shen, X., Zhao, H., and Nagahama, Y., 2011. Genomewide analysis of Sox genes in Medaka (Oryzias latipes) and their expression pattern in embryonic development. Cytogenetic and Genome Research, 134(4): 283–294, DOI: 10.1159/000329480.

    Article  Google Scholar 

  • Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., Croft, G. F., Saphier, G., Leibel, R., Goland, R., Wichterle, H., Henderson, C. E., and Eggan, K., 2008. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893): 1218–1221, DOI: 10.1126/science.1158799.

    Article  Google Scholar 

  • Ferri, A. L., Cavallaro, M., Braida, D., Di Cristofano, A., Canta, A., Vezzani, A., Ottolenghi, S., Pandolfi, P. P., Sala, M., De-Biasi, S., and Nicolis, S. K., 2004. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 131(15): 3805–3819, DOI: 10.1242/dev.01204.

    Article  Google Scholar 

  • Feng, Z. F., Zhang, Z. F., Shao, M. Y., and Zhu, W., 2011. Development expression pattern of the Fc-vasa-like gene, gonadogenesis and development of germ cell in Chinese shrimp, Fenneropenaeus chinensis. Aquaculture, 314: 202–209, DOI: 10.1016/j.aquaculture.2011.02.017.

    Article  Google Scholar 

  • Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Münsterberg, A., Vivian, N., Goodfellow, P., and Lovell-Badge, R., 1990. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 346(6281): 245–250, DOI: 10.1038/346245a0.

    Article  Google Scholar 

  • Graham, V., Khudyakov, J., Ellis, P., and Pevny, L., 2003. SOX2 functions to maintain neural progenitor identity. Neuron, 39(5): 749–765, DOI: 10.1016/S0896-6273(03)00497-5.

    Article  Google Scholar 

  • Kamachi, Y., Uchikawa, M., Collignon, J., Lovell-Badge, R., and Kondoh, H., 1998. Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development, 125(13): 2521–2532.

    Google Scholar 

  • Keramari, M., Razavi, J., Ingman, K. A., Patsch, C., Edenhofer, F., Ward, C. M., and Kimber, S. J., 2010. Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PloS one, 5(11): e13952, DOI: 10.1371/journal.pone.0013952.

    Article  Google Scholar 

  • Kim, J., Lengner, C. J., Kirak, O., Hanna, J., Cassady, J. P., Lodato, M. A., Wu, S., Faddah, D. A., Steine, E. J., Gao, Q., Fu, D. D., Dawlaty, M., and Jaenisch, R., 2011. Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors. Stem Cells, 29(6): 992–1000, DOI: 10.1002/stem. 641.

    Article  Google Scholar 

  • Koopman, P., 2005. Sex determination: A tale of two Sox genes. Trends in Genetics, 21(7): 367–370, DOI: 10.1016/j.tig.2005.05.006.

    Article  Google Scholar 

  • Kriks, S., Shim, J. W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., CarrilloReid, L., Auyeung, G., Antonacci, C., Buch, A., Yang, L. C., Beal, M. F., Surmeier, J., and Kordower, J. H., 2011. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 480(7378): 547–551, DOI: 10.1038/nature10648.

    Google Scholar 

  • Li, M., Pevny, L., Lovell-Badge, R., and Smith, A., 1998. Generation of purified neural precursors from embryonic stem cells by lineage selection. Current Biology, 8(17): 971–S2, DOI: 10.1016/S0960-9822(98)70399-9.

    Article  Google Scholar 

  • Liu, H., Zhu, F., Yong, J., Zhang, P., Hou, P., Li, H., Jiang, W., Cai, J., Liu, M., Cui, K., Qu, X. X., Xiang, T. T., Lu, D. Y., Chi, X. C., Gao, G., Ji, W. Z., Ding, M. X., and Deng, H. K., 2008. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell, 3(6): 587–590, DOI: 10.1016/j.stem.2008.10.014.

    Article  Google Scholar 

  • Loh, Y. H., Agarwal, S., Park, I. H., Urbach, A., Huo, H., Heffner, G. C., Kim, K., Miller, J. D., Ng, K., and Daley, G. Q., 2009. Generation of induced pluripotent stem cells from human blood. Blood, 113(22): 5476–5479, DOI: 10.1182/blood-2009-02-204800.

    Article  Google Scholar 

  • Marandel, L., Labbe, C., Bobe, J., Jammes, H., Lareyre, J. J., and Le Bail, P. Y., 2012. Do not put all teleosts in one net: Focus on the sox2 and pou2 genes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 164(2): 69–79, DOI: 10.1016/j.cbpb.2012.10.005.

    Article  Google Scholar 

  • Mizuseki, K., Kishi, M., Matsui, M., Nakanishi, S., and Sasai, Y., 1998. Xenopus Zic-related-1 and SOX2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development, 125(4): 579–587.

    Google Scholar 

  • Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., and Yamanaka, S., 2008. Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903): 949–953, DOI: 10.1126/science.1164270.

    Article  Google Scholar 

  • Okuda, Y., Yoda, H., Uchikawa, M., Furutani-Seiki, M., Takeda, H., Kondoh, H., and Kamachi, Y., 2006. Comparative genomic and expression analysis of group B1 sox genes in zebrafish indicates their diversification during vertebrate evolution. Developmental Dynamics, 235(3): 811–825, DOI: 10.1002/dvdy.20678.

    Article  Google Scholar 

  • Pan, H., and Schultz, R. M., 2011. SOX2 modulates reprogramming of gene expression in two-cell mouse embryos. Biology of Reproduction, 85(2): 409–416, DOI: 10.1095/boilreprod.111.090886.

    Article  Google Scholar 

  • Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., and Daley, G. Q., 2008. Disease-specific induced pluripotent stem cells. Cell, 134(5): 877–886, DOI: 10.1016/j.cell.2008.07.041.

    Article  Google Scholar 

  • Payen, E., Pailhoux, E., Gianquinto, L., Hayes, H., Le Pennec, N., Bezard, J., and Cotinot, C., 1997. The ovine Sox2 gene: Sequence, chromosomal localization and gonadal expression. Gene, 189(1): 143–147, DOI: 10.1016/S0378-1119(96)00782-2.

    Article  Google Scholar 

  • Rex, M., Orme, A., Uwanogho, D., Tointon, K., Wigmore, P. M., Sharpe, P. T., and Scotting, P. J., 1997. Dynamic expression of chicken Sox2 and Sox3 genes in ectoderm induced to form neural tissue. Developmental Dynamics, 209(3): 323–332, DOI: 10. 1002/(SICI)1097-0177(199707)209:3<323::AID-AJA7>3.0.CO;2-K.

    Article  Google Scholar 

  • Sandberg, M., Källström, M., and Muhr, J., 2005. Sox21 promotes the progression of vertebrate neurogenesis. Nature Neuroscience, 8(8): 995–1001, DOI: 10.1038/nn1493.

    Article  Google Scholar 

  • Shimada, H., Nakada, A., Hashimoto, Y., Shigeno, K., Shionoya, Y., and Nakamura, T., 2010. Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Molecular Reproduction and Development, 77(1): 2, DOI: 10.1002/mrd. 21117.

    Article  Google Scholar 

  • Stevanovic, M., Zuffardi, O., Collignon, J., Lovell-Badge, R., and Goodfellow, P., 1994. The cDNA sequence and chromosomal location of the human Sox2 gene. Mammalian Genome, 5(10): 640–642, DOI: 10.1007/BF00411460.

    Article  Google Scholar 

  • Takahashi, K., and Yamanaka, S., 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676, DOI: 10.1016/j.cell.2006.07.024.

    Article  Google Scholar 

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S., 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872, DOI: 10.1016/j.cell.2007.11.019.

    Article  Google Scholar 

  • Takayama, N., Nishimura, S., Nakamura, S., Shimizu, T., Ohnishi, R., Endo, H., Yamaguchi, T., Otsu, M., Nishimura, K., Nakanishi, M., Sawaguchi, A., Nagai, R., Takahashi, K., Yamanaka, S., Nakauchi, H., and Eto, K., 2010. Transient activation of C-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. The Journal of Experimental Medicine, 207(13): 2817–2830, DOI: 10.1084/jem.20100844.

    Article  Google Scholar 

  • Uwanogho, D., Rex, M., Cartwright, E. J., Pearl, G., Healy, C., Scotting, P. J., and Sharpe, P. T., 1995. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mechanisms of Development, 49(1): 23–36, DOI: 10.1016/0925-4773(94)00299-3.

    Article  Google Scholar 

  • West, F. D., Terlouw, S. L., Kwon, D. J., Mumaw, J. L., Dhara, S. K., Hasneen, K., Dobrinsky, J. R., and Stice, S. L., 2010. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells and Development, 19(8): 1211–1220, DOI: 10.1089/scd.2009.0458.

    Article  Google Scholar 

  • Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., and Thomson, J. A., 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917–1920, DOI: 10.1126/science.1151526.

    Article  Google Scholar 

  • Yuan, H., Corbi, N., Basilico, C., and Dailey, L., 1995. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes and Development, 9(21): 2635–2645, DOI: 10.1101/gad.9.21.2635.

    Article  Google Scholar 

  • Zappone, M. V., Galli, R., Catena, R., Meani, N., De Biasi, S., Mattei, E., Tiveron, C., Vescovi, A. L., Lovell-Badge, R., Ottolenghi, S., and Nicolis, S. K., 2000. Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development, 127(11): 2367–2382.

    Google Scholar 

  • Zhou, Z., Wang, L., Shi, X., Yue, F., Wang, M., Zhang, H., and Song, L., 2012. The expression of dopa decarboxylase and dopamine beta hydroxylase and their responding to bacterial challenge during the ontogenesis of scallop Chlamys farreri. Fish and Shellfish Immunology, 33(1): 67–74, DOI: 10.1016/j.fsi.2012.04.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Ma, X., Han, T. et al. Expression pattern of Chlamys farreri sox2 in eggs, embryos and larvae of various stages. J. Ocean Univ. China 14, 731–738 (2015). https://doi.org/10.1007/s11802-015-2558-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-015-2558-4

Key words

Navigation