Skip to main content
Log in

Removal of cadmium from aqueous solution by immobilized Microcystis aeruginosa: Isotherms, kinetics and thermodynamics

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The Microcystis aeruginosa (MA) was immobilized on sodium alginate and used as biosorbent for removal of Cd(II) ions from aqueous solution. The biosorption process is pH dependent, and the optimum biosorption was observed at pH 6.0 with the biosorption capacity of 98.38 mg/g. Among Langmuir, Freundlich and Temkin isotherm models, the Freundlich and the Temkin isotherm fit well with the experimental data. Cd(II) ions biosorption follows the pseudo-second-order kinetic model. The rate controlling mechanism study reveals that film diffusion is the rate-limiting step and intraparticle diffusion is also involved in biosorption. Thermodynamic parameters, such as Gibbs free energy (ΔG o), the enthalpy (ΔH po) and entropy (ΔS o) were calculated, and revealed that the biosorption process is spontaneous, exothermic and random. Furthermore, the immobilized MA can be regenerated using 0.1 mol/L HCl solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PÉREZ-MARÍN A B, ZAPATA V M, ORTUÑO J F, AGUILAR M, SÁEZ J, LLORÉNS M. Removal of cadmium from aqueous solutions by adsorption onto orange waste [J]. Journal of Hazardous Materials, 2007, 139(1): 122–131.

    Article  Google Scholar 

  2. LUO Jin-ming, XIAO Xiao, LUO Sheng-lian. Biosorption of cadmium(II) from aqueous solutions by industrial fungus rhizopus cohnii [J].Transactions of Nonferrous Metals Society of China, 2010, 20(6): 1104–1111.

    Article  Google Scholar 

  3. WAALKES M P. Review cadmium carcinogenesis [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 533(1): 107–120.

    Article  Google Scholar 

  4. CHEN Gui-qiu, ZENG Guang-ming, TANG Lin, DU Chun-yan, JIANG Xiao-yun, HUANG Guo-he, LIU Hong-liang, SHEN Guo-li. Cadmium removal from aqueous solution to biomass byproduct of Lentinusedodes [J]. Bioresource Technology, 2008, 99(15): 7034–7040.

    Article  Google Scholar 

  5. WANG Jing-song, HU Xin-jiang, LIU Yun-guo, XIE Shui-bo, BAO Zheng-lei. Biosorption of uranium (VI) by immobilized Aspergillusfumigatus beads [J]. Journal of Environmental Radioactivity, 2010, 101(6): 504–508.

    Article  Google Scholar 

  6. PANDA M, BHOWAL A, DATTA S. Removal of hexavalent chromium by biosorption process in rotating packed bed [J]. Enviroment Science & Technology, 2011, 45(19): 8460–8466.

    Article  Google Scholar 

  7. FENG Ning-chuan, GUO Xue-yi, LIANG Sha. Kinetic and thermodynamic studies on biosorption of Cu(II) by chemically modified orange peel [J]. Transactions of Nonferrous Metals Society of China, 2009, 19: 1365–1370.

    Article  Google Scholar 

  8. YAN Rong, YANG Fan, WU Yong-hong, HU Zheng-yi, NATH B, YANG L Z, FANG Yan-ming. Cadmium and mercury removal from non-point source wastewater by a hybrid bioreactor [J]. Bioresource Technology, 2011, 102(21): 9927–9932.

    Article  Google Scholar 

  9. KATIRCIOĞLU H, ASLIM B, TÜRKER A R, ATICI T, BEYATLI Y. Removal of cadmium(II) ion from aqueous system by dry biomass, immobilized live and heat-inactivated Oscillatoria sp. H1 isolated from freshwater (Mogan Lake) [J]. Bioresource Technology, 2008, 99(10): 4185–4191.

    Article  Google Scholar 

  10. PAVASANT P, APIRATIKUL R, SUNGKHUM V, SURHIPARINYANONT P, WATTANACHIRA S, MARHABA T F. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine grenmacroalga Capulerpalentillifera [J]. Bioresource Technology, 2006, 97(18): 2321–2329.

    Article  Google Scholar 

  11. HUSSEIN H, İBRAHIM S F, KANDEEL K, MOAWAD H. Biosorption of heavy metals from waste water using Pseudomonas sp H1 [J]. Electronic Journal of Biotechnology, 2004, 7(1): 38–46.

    Article  Google Scholar 

  12. ARICA M Y, BAYRAMOĞLU G, YILMAZ M, BEKTAŞ S, GENÇ ÖMER, Biosorption of Hg2+,Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funaliatrogii [J]. Journal of Hazardous Materials, 2004, 109(1): 191–199.

    Google Scholar 

  13. ZHANG Yun-song, LIU Wei-guo, XU Meng, ZHENG Fei, ZHAO Mao-jun. Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker’s yeast biomass [J]. Journal of Hazardous Materials, 2010, 178(1): 1085–1093.

    Article  Google Scholar 

  14. SCHIEWER S, VOLESKY B. Biosorption processes for heavy metal removal [M]. Washington, DC: ASM Press, 2000: 24–26.

    Google Scholar 

  15. BAJPAI J, SHRIVASTAVA R, BAJPAI A K. Dynamic and equilibrium studies on adsorption of Cr(VI) ions onto binary biopolymeric beads of cross-linked alginate and gelatin [J]. Colloids Surf A: Physicochem Eng Aspects, 2004, 236(1): 81–90.

    Article  Google Scholar 

  16. BAI R S, ABRAHAM T E. Studies on Cr(VI) adsorption-desorption using immobilized fungal biomass [J]. Bioresource Technology, 2003, 87(1): 17–26.

    Article  Google Scholar 

  17. CHEN J H, LIU Q L, HU S R, NI J C, HE Y S. Adsorption mechanism of Cu(II) ions from aqueous solution by glutaraldehyde crosslinked humic acid-immobilized sodium alginate porous membrane adsorbent [J]. Chemical Engineering Journal, 2011, 173(2): 511–519.

    Article  Google Scholar 

  18. BRIGANTE M, ZANINI G, AVENA M. Effect of humic acids on the adsorption of paraquat by goethite [J]. Journal of Hazardous Materials, 2010, 184(1): 241–247.

    Article  Google Scholar 

  19. KAPOOR A, VIRARAGHAVAN T, CULLIMORE D R. Removal of heavy metals using the fungus Aspergillus niger [J]. Bioresource Technology, 1999, 70(1): 95–104.

    Article  Google Scholar 

  20. XIAO Xiao, LUO Sheng-lian, ZENG Guang-ming, WEI Wan-zhi, WAN Yong, CHEN Liang, GUO Han-jun, CAO Zhe, YANG Li-xia, CHEN Jue-liang, XI Qiang. Biosorption of cadmium by endophytic fungus(EF) Microsphaeropsis sp LSE10 isolated from cadmium hyperaccumulator solanum nigrum L [J]. Bioresource Technology, 2010, 101(6): 1668–1674.

    Article  Google Scholar 

  21. RANGSAYATORN N, POKETHITIYOOK P, UPATHAM E S, LANZA G R. Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel [J]. Environment International, 2004, 30(1): 57–63.

    Article  Google Scholar 

  22. GODLEWSKA-ŻYŁKIEWICHZ B. Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, 58(8): 1531–1540.

    Article  Google Scholar 

  23. HU Xin-jiang, WANG Jing-song, LIU Yun-guo, LI Xi, ZENG Guang-ming, BAO Zheng-lei, ZENG Xiao-xia, CHEN An-wei, LONG Fei. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics [J]. Journal of Hazardous Materials, 2011, 185(1): 306–314.

    Article  Google Scholar 

  24. YUAN Xing-zhong, JIANG Li-li, ZENG Guang-ming, LIU Zhi-feng, ZHONG Hua, HUANG Hua-jun, ZHOU Mei-fang, CUI Kai-long. Effect of rhamnolipids on cadmium adsorption by Penicillium simplicissimum [J]. Journal of Central South University, 2012, 19(4): 1073–1080.

    Article  Google Scholar 

  25. HAMDAOUI O, NAFFRECHOUX E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters [J]. Journal of Hazardous Materials, 2007, 147(1): 381–394.

    Article  Google Scholar 

  26. AKAR T, TUNALI S. Biosorption characteristics of Aspergillusflavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution [J]. Bioresource Technology, 2006, 97(15): 1780–1787.

    Article  Google Scholar 

  27. KIRAN B, KAUSHIK A. Chromium binding capacity of Lyngbya putealis exopolysaccharides [J]. Biochemical Engineering Journal, 2008, 38(1): 47–54.

    Article  Google Scholar 

  28. MATA Y N, BLÁZQUEZ M L, BALLESTER A, GONZÁLEZ F, MUÑOZ J A. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucusvesiculosus [J]. Journal of Hazardous Materials, 2009, 163(2): 555–562.

    Article  Google Scholar 

  29. HO Y S, MCKAY G. Kinetic models for the sorption of dye from aqueous solution by wood [J]. Process Safety and Environmental Protection, 1998, 76(2): 183–191.

    Article  Google Scholar 

  30. BLANCHARD G, MAUNAYE M, MARTIN G. Removal of heavy metals from waters by means of natural zeolites [J]. Water Research, 1984, 18(12): 1501–1507.

    Article  Google Scholar 

  31. WAN NGAH W S, AB GHANI S, KAMARI A. Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads [J]. Bioresource Technology, 2005, 96(4): 443–450.

    Article  Google Scholar 

  32. DING Yang, JING De-bing, GONG Hui-li, ZHOU Lian-bi, YANG Xiao-song. Biosorption of aquatic cadmium(II) by unmodified rice straw [J]. Bioresource Technology, 2012, 114: 20–25.

    Article  Google Scholar 

  33. DOTTO G L, VIEIRA M L G, PINTO L A A. Kinetics and mechanism of tartrazine adsorption onto chitin and chitosan [J]. Industrial & Engineering Chemistry Research, 2012, 51(19): 6862–6868.

    Article  Google Scholar 

  34. BOYD G E, ADAMSON A W, MYERS L S. The exchange adsorption of ions from aqueous solutions by organic zeolites [J]. Journal of the American Chemical Society, 1947, 69(11): 2836–2848.

    Article  Google Scholar 

  35. MOHAN D, SINGH K P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste [J]. Water Research, 2002, 36(9): 2304–2318.

    Article  Google Scholar 

  36. SUNDARAMA C S, VISWANATHAN N, MEENAKSHI S. Defluoridation chemistry of synthetic hydroxyapatite at nano scale: Equilibrium and kinetic studies [J]. Journal of Hazardous Materials, 2008, 155(1): 206–215.

    Article  Google Scholar 

  37. WAN NGAH W S, FATINATHAN S. Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads [J]. Chemical Engineering Journal, 2008, 143(1): 62–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-guo Liu  (刘云国).

Additional information

Foundation item: Project(41271332) supported by the National Natural Science Foundation of China; Project(11JJ2031) supported by the Natural Science Foundation of Hunan Province, China; Project(2012SK2021) supported by the Science and Technology Planning Program of Hunan Province, China; Project(CX2012B138) supported by the Hunan Provincial Innovation Foundation for Postgraduate, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, Yg., Hu, Xj. et al. Removal of cadmium from aqueous solution by immobilized Microcystis aeruginosa: Isotherms, kinetics and thermodynamics. J. Cent. South Univ. 21, 2810–2818 (2014). https://doi.org/10.1007/s11771-014-2244-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-2244-5

Key words

Navigation