Skip to main content
Log in

Ultrasonic Value is Not Useful to Detect Bone Changes Following a Biliopancreatic Diversion

  • Clinical Report
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

To study the evolution of the bone mass by ultrasonic transmission after biliopancreatic diversion. Forty eight morbid obese patients were prospectively studied during 36 months following the Larrad biliopancreatic diversion. The bone metabolism was studied by PTHi and the urinary pirydinolines. The bone mass by echography and bone densitometry, which correlate to the levels of PTHi and pyridinolines. After 3 years the bone mass decreased from 50.15 +/− 7.31 kg/m2, preoperatively, to 34.03 +/− 4.53 kg/m2 (p < 0.001). There was an increase of the PTHi value (from 71.4 +/− 79.6 to 91.65 +/− 43.06 pg/ml) (p = 0.01), and the urinary pirydinolines (from 7.93 +/− 4.06 an 11.4 +/− 10.12 nM/mM) (p < 0.05). The ultrasonic transmission speed increased (from 1,990.93 +/− 62.38 to 2,035.25 +/− 53.98 m/s). However, the bone mineral content (BMC) did not show changes (from 3,016.5 +/− 562.8 to 2,909.6 +/− 304.2 g), as well as the Bone Mineral Density (BMD) (of 1,174.2 +/− 98.8 g/cm2). Neither correlation was found between the BMD (r = 0.212; p = 0.6), the BMC (r =−0.125; p = 0.768), and the T-score (r = 0.592, p = 0.093). The study of the bone mass through ultrasonic transmission speed revealed low sensitivity during the assessment of the morbid obese patients. A percentage of cases of osteopenia were observed despite the fact that they are not reflected in the bone content or in the bone mass. Ultrasonic evaluation of bone mass has no value in the morbidly obese, by the clear negative correlation between ultrasound velocity and thickness of soft tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Montagnani A, Gonnelli S, Cepollaro C, et al. Usefulness of bone quantitative ultrasound in management of osteoporosis in men. J Clin Densitom. 2001;4:231–7.

    Article  CAS  PubMed  Google Scholar 

  2. Ponteggia M, Ponteggia F, Di Cato L, et al. The usefulness of the quantitative ultrasound to diagnose glucocorticoids induced osteoporosis. Minerva Med. 2002;93:485–90.

    CAS  PubMed  Google Scholar 

  3. Casanova RM, Gutiérrez BP, Ferriz MB, et al. Usefulness of ultrasound in the assessment of bone mineralization in newborns. An Esp Pediatr. 2002;56:443–7.

    Google Scholar 

  4. Baroncelli GI, Battini R, Bertelloni S, et al. Analysis of quantitative ultrasound graphic trace and derived variables assessed at proximal phalanges of the hand in healthy subjects and in patients with cerebral palsy or juvenile idiopathic arthritis. A pilot study. Bone. 2010;46:182–9.

    Article  PubMed  Google Scholar 

  5. Rose EC, Hagenmuller M, Jonas IE, et al. Validation of speed of sound for the assessment of cortical bone maturity. Eur J Orthod. 2005;27:190–5.

    Article  CAS  PubMed  Google Scholar 

  6. Wuster C, de Terlizzi F, Becker S, et al. Usefulness of quantitative ultrasound in evaluating structural and mechanical properties of bone: comparison of ultrasound, dual-energy X-ray absorptiometry, micro-computed tomography, and mechanical testing of human phalanges in vitro. Technol Health Care. 2005;13:497–510.

    CAS  PubMed  Google Scholar 

  7. Varenna M, Sinigaglia L, Adami S, et al. Association of quantitative heel ultrasound with history of osteoporotic fractures in elderly men: the ESOPO study. Osteoporos Int. 2005;16:1749–54.

    Article  CAS  PubMed  Google Scholar 

  8. Scopinaro N, Gianetta E, Pandolfo N, et al. Bilio-pancreatic bypass. Proposal and preliminary experimental study of a new type of operation for the functional surgical treatment of obesity. Minerva Chir. 1976;31:560–6.

    CAS  PubMed  Google Scholar 

  9. Ott MT, Fanti P, Malluche HH, et al. Biochemical evidence of metabolic bone disease in women following roux-Y gastric bypass for morbid obesity. Obes Surg. 1992;2:341–8.

    Article  PubMed  Google Scholar 

  10. Wucher H, Ciangura C, Poitou C, et al. Effects of weight loss on bone status after bariatric surgery: association between adipokines and bone markers. Obes Surg. 2008;18:58–65.

    Article  PubMed  Google Scholar 

  11. Newbury L, Dolan K, Hatzifotis M, et al. Calcium and vitamin D depletion and elevated parathyroid hormone following biliopancreatic diversion. Obes Surg. 2003;13:893–5.

    Article  PubMed  Google Scholar 

  12. Abendschein W, Hyatt G. Ultrasonics and selected physical properties of bone. Clin Orthop. 1970;69:294–301.

    CAS  PubMed  Google Scholar 

  13. Ministero della Salute. Individuazione dei criteri di accesso alla Densitometria Ossea. Roma: Tecniche, Principi Fisici Apparecchiature; 2005.

    Google Scholar 

  14. Rico H, Aguado F, Revilla M, et al. Ultrasound bone velocity and metacarpal radiogrametry in hemodialyzed patients. Miner Electrolyte Metab. 1994;20:103–6.

    CAS  PubMed  Google Scholar 

  15. Fredfeldt KE. Sound velocity in the middle phalanges of the human hand. Acta Radiol Diagn (Stockh). 1986;27:95–6.

    CAS  Google Scholar 

  16. Kaufman JJ, Einhorn TA. Ultrasound assessment of bone. J Bone Miner Res. 1993;8:517–25.

    Article  CAS  PubMed  Google Scholar 

  17. Mele R, Masci G, Ventura V, et al. Three-year longitudinal study with quantitative ultrasound at the hand phalanx in a female population. Osteoporos Int. 1997;7:550–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kleerekoper M, Edelson GW. Biochemical studies in the evaluation and management of osteoporosis: current status and future pospects. Endocr Pract. 1996;2:3–19.

    Google Scholar 

  19. Sánchez-Cabezudo C, Diaz-Guerra C, Larrad JA. Analysis of weight loss with the biliopancreatic diversion of Larrad: absolute failures or relative successes? Obes Surg. 2002;12:249–52.

    Article  Google Scholar 

  20. Greenstein RJ, Belachew M. Implantable gastric stimulation (IGS) as therapy for human morbid obesity: report from the 2001 IFSO symposium in Crete. Obes Surg. 2002;12 Suppl 1:3S–5S.

    Article  PubMed  Google Scholar 

  21. Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3.

    CAS  PubMed  Google Scholar 

  22. Scopinaro N, Adami GF, Marinari GM, et al. Biliopancreatic diversion. World J Surg. 1998;22:936–46.

    Article  CAS  PubMed  Google Scholar 

  23. Hernández ER, Revilla M, Rico H. Contenido mineral óseo en mujeres premenopáusicas y su relación a variables antropométricas. An Anat. 1993;39:27–32.

    Google Scholar 

  24. DeSimone DP, Stevens J, Edwards J, et al. Influence of body habitus and race on bone mineral density of the midradius, hip, and spine in aging women. J Bone Miner Res. 1989;4:827–30.

    Article  CAS  PubMed  Google Scholar 

  25. Felson DT, Zhang Y, Hannan MT, et al. Effects of weight and body mass index on bone mineral density in men and women: the Framinghan study. J Bone Miner Res. 1993;8:567–73.

    Article  CAS  PubMed  Google Scholar 

  26. Kissebah AH, Peiris AN. Biology of regional body fat distribution: relationship to non-insulin-dependent diabetes mellitus. Diab Metab Rev. 1989;5:83–109.

    Article  CAS  Google Scholar 

  27. Ribot C, Tremollieres F, Pouilles JM, et al. Influence of the menopause and aging on spinal density in French women. Bone Miner. 1988;5:89–97.

    Article  CAS  PubMed  Google Scholar 

  28. Guney E, Kisakol G, Ozgen G, et al. Effect of weight loss on bone metabolism: comparison of vertical banded gastroplasty and medical intervention. Obes Surg. 2003;13:383–8.

    Article  PubMed  Google Scholar 

  29. Revilla M, Villa LF, Hernández ER, et al. Influence of weight and gonadal status on total and regional bone mineral content and on weight-bearing and non-weight-bearing bones, measured by dual-energy X-ray absorptiometry. Maturitas. 1997;28:69–74.

    Article  CAS  PubMed  Google Scholar 

  30. Mazess RB, Barden HS. Interrelationships among bone densitometry sites in normal young women. Bone Miner. 1990;11:347–56.

    Article  CAS  PubMed  Google Scholar 

  31. Revilla M, Villa LF, Sánchez-Atrio A, et al. Influence of body mass index on the age-related slope of total and regional bone mineral content. Calcif Tissue Int. 1997;61:134–8.

    Article  CAS  PubMed  Google Scholar 

  32. Riggs BL, O'Fallon WM, Muhs J, et al. Long-term effects of calcium supplementation on serum parathyroid hormone level, bone turnover, and bone loss in elderly women. J Bone Miner Res. 1998;13:168–74.

    Article  CAS  PubMed  Google Scholar 

  33. Horowitz M, Wishart JM, Goh D, et al. Oral calcium suppresses biochemical markers of bone resorption in normal men. Am J Clin Nutr. 1994;60:965–8.

    CAS  PubMed  Google Scholar 

  34. Sairanen S, Karkkainen M, Tahtela R, et al. Bone mass and markers of bone and calcium metabolism in postmenopausal women treated with 1,25-dihydroxyvitamin D (calcitriol) for 4 years. Calcif Tissue Int. 2000;67:122–7.

    Article  CAS  PubMed  Google Scholar 

  35. Larrad-Jiménez A, Díaz-Guerra CS, de Cuadros BP, et al. Short-, mid- and long-term results of Larrad biliopancreatic diversion. Obes Surg. 2007;17:202–10.

    Article  PubMed  Google Scholar 

  36. Grampp S, Jergas M, Gluer CC, et al. Radiologic diagnosis of osteoporosis. Current methods and perspectives. Radiol Clin North Am. 1993;31:1133–45.

    CAS  PubMed  Google Scholar 

  37. Aguado F, Revilla M, Hernández ER, et al. Behavior of bone mass measurements. Dual energy x-ray absorptiometry total body bone mineral content, ultrasound bone velocity, and computed metacarpal radiogrammetry, with age, gonadal status, and weight in healthy women. Invest Radiol. 1996;31:218–22.

    Article  CAS  PubMed  Google Scholar 

  38. Lees B, Stevenson JC. Preliminary evaluation of a new ultrasound bone densitometer. Calcif Tissue Int. 1993;53:149–52.

    Article  CAS  PubMed  Google Scholar 

  39. Gómez M, Aguado F, Manuel J, et al. Influence of soft tissue (fat and fat-free mass) on ultrasound bone velocity: an in vivo study. Invest Radiol. 1997;32:609–12.

    Article  PubMed  Google Scholar 

  40. Aguado F. Valores de masa osea por Ultrasonidos en nuestro medio y su correlación con la Radiogrametria y Densitometria de Rayos X. Doctoral thesis, Alcalá Universiy, Madrid; 1996.

  41. Kotzki PO, Buyck D, Hans D, et al. Influence of fat on ultrasound measurements of the os calcis. Calcif Tissue Int. 1994;54:91–5.

    Article  CAS  PubMed  Google Scholar 

  42. Rico H, Gómez M, Aguado F, et al. Impact of weight in obese subjects on bone speed of sound. Invest Radiol. 1999;34:596–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest Disclosure

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Martín Duce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcalde, O.L., Duce, A.M., Bustos, F.A. et al. Ultrasonic Value is Not Useful to Detect Bone Changes Following a Biliopancreatic Diversion. OBES SURG 21, 173–178 (2011). https://doi.org/10.1007/s11695-010-0323-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-010-0323-8

Keywords

Navigation