Skip to main content
Log in

Experimental Investigation and CALPHAD Assessment of the Eutectic Trough in the System NiAl-Cr-Mo

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

NiAl-based alloys are promising candidates for high-temperature structural applications but their use is restricted by the limited mechanical properties. However, an improved performance can be achieved by strengthening the NiAl matrix with embedded fibers of refractory metals, such as Cr and Mo. Such composites can be manufactured in-situ by directional solidification of alloys with eutectic composition. For these processes the location of the eutectic trough in the NiAl-Cr-Mo system has to be known. The determination of the respective compositions was achieved by combining experimental investigations with computational thermodynamics. Thus, a series of melts in the NiAl-Cr-Mo system were prepared and their microstructures were investigated after solidification. The information on the primary phases was used to model the liquidus surface of the system NiAl-Cr-Mo using the CALPHAD approach. For this purpose, the thermodynamic datasets of the respective sub-systems from the literature have been combined into a quaternary database. The database will be used in the development of NiAl-based alloys for directional solidification. The dataset allows the calculation of the eutectic temperatures, the phase fractions and further thermodynamic properties along the eutectic trough. The present dataset will provide a reliable description for the NiAl-Cr-Mo system, but other regions of the Al-Cr-Mo-Ni system have an inferior representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.D. Noebe, R.R. Bowman, and M.V. Nathal, Physical and Mechanical Properties of the B2 Compound NiAl, Int. Mater. Rev., 1993, 38, p 193-232

    Article  Google Scholar 

  2. D.B. Miracle, Overview No. 104 The Physical and Mechanical Properties of NiAl, Acta Metall. Mater., 1993, 41, p 649-684

    Article  Google Scholar 

  3. E.P. George and C.T. Liu, Brittle Fracture and Grain Boundary Chemistry of Microalloyed NiAl, J. Mater. Res., 1990, 5, p 754-762

    Article  ADS  Google Scholar 

  4. C.A. Barrett, Effect of 0.1 at.% Zirconium on the Cyclic Oxidation Resistance of β-NiAl, Oxid. Met., 1988, 30, p 361-390

    Article  Google Scholar 

  5. F. Ebrahimi and S. Shrivastava, Brittle-to-ductile Transition in NiAl Single Crystal, Acta Mater., 1998, 46, p 1493-1502

    Article  Google Scholar 

  6. J.L. Walter and H.E. Cline, The Effect of Solidification Rate on Structure and High-Temperature Strength of the Eutectic NiAl-Cr, Metall. Trans., 1970, 1, p 1221-1229

    Google Scholar 

  7. P. Ferrandini, W.W. Batista, and R. Caram, Influence of Growth Rate on the Microstructure and Mechanical Behaviour of a NiAl-Mo Eutectic Alloy, J. Alloys Compd., 2004, 381, p 91-98

    Article  Google Scholar 

  8. H. Bei and E.P. George, Microstructures and Mechanical Properties of a Directionally Solidified NiAl-Mo Eutectic Alloy, Acta Mater., 2005, 53, p 69-77

    Article  Google Scholar 

  9. J.F. Zhang, J. Shen, Z. Shang, Z.R. Feng, L.S. Wang, and H.Z. Fu, Microstructure and Room Temperature Fracture Toughness of Directionally Solidified NiAl-Mo Eutectic in situ Composites, Intermetallics, 2012, 21, p 18-25

    Article  Google Scholar 

  10. S. Bogner, L. Hu, S. Hollad, W. Hu, G. Gottstein, and A. Bührig-Polaczek, Microstructure of a Eutectic NiAl-Mo Alloy Directionally Solidified using an Industrial Scale and a Laboratory Scale Bridgman Furnace, Int. J. Mater. Res., 2012, 103, p 17-23

    Article  Google Scholar 

  11. L. Hu, W. Hu, G. Gottstein, S. Bogner, S. Hollad, and A. Bührig-Polaczek, Investigation into Microstructure and Mechanical Properties of NiAl-Mo Composites Produced by Directional Solidification, Mater. Sci. Eng. A, 2012, 539, p 211-222

    Article  Google Scholar 

  12. X.F. Chen, D.R. Johnson, R.D. Noebe, and B.F. Oliver, Deformation and Fracture of a Directionally Solidified NiAl-28Cr-6Mo Eutectic Alloy, J. Mater. Res., 1995, 10, p 1159-1170

    Article  ADS  Google Scholar 

  13. D.R. Johnson, X.F. Chen, B.F. Oliver, R.D. Noebe, and J.D. Whittenberger, Directional Solidification and Mechanical Properties of NiAl Single Bond NiAlTa Alloys, Intermetallics, 1995, 3, p 141-152

    Article  Google Scholar 

  14. J.M. Yang, The Mechanical Behavior of In-situ NiAl-Refractory Metal Composites, JOM, 1997, 49, p 40-43

    Article  Google Scholar 

  15. J.D. Whittenberger, S.V. Raj, I.E. Locci, and J.A. Salem, Effect of Growth Rate on Elevated Temperature Plastic Flow and Room Temperature Fracture Toughness of Directionally Solidified NiAl-31Cr-3Mo, Intermetallics, 1999, 7, p 1159-1168

    Article  Google Scholar 

  16. S.V. Raj and I.E. Locci, Microstructural Characterization of a Directionally-Solidified Ni-33 (at.%) Al-31Cr-3Mo Eutectic Alloy as a Function of Withdrawal Rate, Intermetallics, 2001, 9, p 217-227

    Article  Google Scholar 

  17. S.V. Raj, I.E. Locci, J.A. Salem, and R.J. Pawlik, Effect of Directionally Solidified Microstructures on the Room-Temperature Fracture-toughness Properties of Ni-33(at.%)Al-33Cr-1Mo and Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Grown at Different Solidification Rates, Metall. Mater. Trans. A, 2002, 33, p 597-612

    Article  Google Scholar 

  18. J.D. Whittenberger, S.V. Raj, I.E. Locci, and J.A. Salem, Elevated Temperature Strength and Room-Temperature Toughness of Directionally Solidified Ni-33Al-33Cr-1Mo, Metall. Mater. Trans. A, 2002, 33, p 1385-1397

    Article  Google Scholar 

  19. Z. Shang, J. Shen, L. Wang, Y. Du, Y. Xiong, and H. Fu, Investigations on the Microstructure and Room Temperature Fracture Toughness of Directionally Solidified NiAl-Cr(Mo) Eutectic Alloy, Intermetallics, 2015, 57, p 25-33

    Article  Google Scholar 

  20. P.L. Ferrandini, F.L.G.U. Araujo, W.W. Batista, and R. Caram, Growth and Characterization of the NiAl-NiAlNb Eutectic Structure, J. Cryst. Growth, 2005, 275, p e147-e152

    Article  ADS  Google Scholar 

  21. S. Milenkovic, A. Schneider, and G. Frommeyer, Constitutional and Microstructural Investigation of the Pseudobinary NiAl-W System, Intermetallics, 2011, 19, p 342-349

    Article  Google Scholar 

  22. Z. Zhang, X. Liu, S. Gong, and H. Xu, Microstructure and Properties of β-NiAl and its Eutectic Alloy with Cr and Mo Additions, Nonferrous Met. Soc. China, 2006, 16, p s2046-s2049

    Google Scholar 

  23. I.I. Kornilov and R.S. Mints, Phase Diagram of the Cr-Ni-Al System, Izv. Sekt. Fiz.-Khim. Anal., Inst. Obschch. Neorg. Khim., Akad. Nauk. SSSR, 1953, 22, p 111-116, in Russian

    Google Scholar 

  24. N. Dupin, I. Ansara, and B. Sundman, Thermodynamic Re-Assessment of the Ternary System Al-Cr-Ni, Calphad, 2001, 25, p 279-298

    Article  Google Scholar 

  25. W.J. Boettinger, U.R. Kattner, K.-W. Moon, and J.H. Perepezko, DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing, Methods for Phase Diagram Determination, J.C. Zhao, Ed., Elsevier, Ames, 2007, p 151-222

    Chapter  Google Scholar 

  26. A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15, p 317-425

    Article  Google Scholar 

  27. N. Saunders, Al-Cr, COST 507, Thermodynamic Database for Light Metal Alloys, Vol. 2, EUR 18499, Ansara I, Dinsdale AT, Rand MH, Eds., European Commission, Luxembourg, 1998, p 23-27.

  28. I. Ansara, N. Dupin, H.L. Lukas, and B. Sundman, Thermodynamic assessment of the Al-Ni system, J. Alloys Comp., 1997, 247, p 20-30

    Article  Google Scholar 

  29. B.-J. Lee, On the Stability of Cr Carbides, Calphad, 1992, 16, p 121-149

    Article  Google Scholar 

  30. J. Peng, P. Franke, D. Manara, T. Watkins, R.J.M. Konings, and H.J. Seifert, Experimental Investigation and Thermodynamic Re-assessment of the Al-Mo-Ni System, J. Alloys Compd., 2016, 674, p 305-314

    Article  Google Scholar 

  31. S.H. Zhou, Y. Wang, C. Liang, J.Z. Zhu, L.-Q. Chen, and Z.-K. Liu, First-Principles Calculations and Thermodynamic Modeling of the Ni-Mo System, Mater. Sci. Eng. A, 2005, A397, p 288-296

    Article  Google Scholar 

  32. K. Frisk and P. Gustafson, An Assessment of the Cr-Mo-W System, Calphad, 1988, 12, p 247-254

    Article  Google Scholar 

  33. V.T. Witusiewicz, A.A. Bondar, U. Hecht, and T. Ya, Velikanova, Thermodynamic Re-Modelling of the Ternary Al-Cr-Ti System with Refined Al-Cr Description, J. Alloys Compd., 2015, 644, p 939-958

    Article  Google Scholar 

  34. N. Dupin, Contribution a l’eveluation thermodynamique des alliages polyconstitutes a base de nickel, Ph. D. Thesis, l’Institut National Polytechnique de Grenoble, France, 1995 (in French).

  35. W. Huang and A. Chang, Thermodynamic Properties of the Ni-Al-Cr System, Intermetallics, 1999, 7, p 863-874

    Article  Google Scholar 

  36. L. Kaufman and H. Nesor, Calculation of Superalloy Phase Diagrams: Part II, Metall. Trans., 1974, 5, p 1623-1629

    Article  Google Scholar 

  37. X. Lu, Y. Cui, and Z. Jin, Experimental and Thermodynamic Investigation of the Ni-Al-Mo System, Metall. Mater. Trans. A, 1999, 30, p 1785-1795

    Article  Google Scholar 

  38. S.H. Zhou, Y. Wang, L.Q. Chen, Z.-K. Liu, and R.E. Napolitano, Solution-Based Thermodynamic Modeling of the Ni-Al-Mo System Using First-Principles Calculations, Calphad, 2014, 46, p 124-133

    Article  Google Scholar 

  39. L. Kaufman and H. Nesor, Calculation of Superalloy Phase Diagrams: Part I, Metall. Trans., 1974, 5, p 1617-1621

    Article  Google Scholar 

  40. K. Frisk, Report TRITA-MAC 429, Royal Institute of Technology, Stockholm, 1990

    Google Scholar 

  41. S.S.O.L. Database, Thermo-Calc Version N, Foundation of Computational Thermodynamics, Royal Institute of Technology, Stockholm, 1998

    Google Scholar 

  42. O. Redlich and A.T. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 345-348

    Article  Google Scholar 

  43. M. Hillert, The Compound Energy Formalism, J. Alloys Compd., 2001, 320, p 161-176

    Article  Google Scholar 

  44. J. Wang, G. Zhang, and S. Li, Investigation of Microstructure and Corrosive Behavior of NiAl-3 1Cr-3 Mo Alloy at High Temperature, Min. Metall. Eng., 2010, 30, p 93-96, in Chinese

    Google Scholar 

  45. B. Sundman, B. Janson, and J.O. Andersson, The Thermo-calc Databank System, Calphad, 1985, 9, p 153-190

    Article  Google Scholar 

  46. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26, p 273-312

    Article  Google Scholar 

  47. P. Franke, Modeling of Thermal Vacancies in Metals within the Framework of the Compound Energy Formalism, J. Phase Equilib. Diffus., 2014, 35, p 780-787

    Article  Google Scholar 

  48. P. Saltykov, V.T. Witusiewicz, I. Arpshofen, O. Fabrichnaya, H.J. Seifert, and F. Aldinger, Thermodynamics of Liquid and Undercooled Liquid Al-Cr-Ni Alloys, Scand. J. Metall., 2001, 30, p 297-301

    Article  Google Scholar 

  49. P. Saltykov, V.T. Witusiewicz, I. Arpshofen, H.J. Seifert, and F. Aldinger, Enthalpy of Mixing of Liquid Al-Cr and Cr-Ni Alloys, J. Mater. Sci. Technol, 2002, 18, p 167-170

    Google Scholar 

  50. D.S. Bloom and N.J. Grant, An Investigation of the Systems Formed by Chromium, Molybdenum and Nickel, J. Metals, 1954, 2, p 261-268

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Initiative and Networking Fund of the Helmholtz Association (VH-KO-610). The authors thank Alexandra Reif, Damian M. Cupid and Thomas Bergfeldt of IAM-AWP, KIT for the help in experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Franke, P. & Seifert, H.J. Experimental Investigation and CALPHAD Assessment of the Eutectic Trough in the System NiAl-Cr-Mo. J. Phase Equilib. Diffus. 37, 592–600 (2016). https://doi.org/10.1007/s11669-016-0490-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-016-0490-y

Keywords

Navigation