Skip to main content
Log in

Influence of Al12Mg17 Additive on Performance of Cold-Sprayed Ni-Al Reactive Material

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Ternary Ni-Al-Al12Mg17 and binary Ni-Al reactive materials were obtained by cold spraying. The reactive performance of both materials was compared to explore the influence of the Al12Mg17 additive. According to differential scanning calorimetry–thermogravimetric analysis–derivative thermogravimetry, the Ni-Al-Al12Mg17 thermal explosion reaction produced a peak at 480 °C, being 160 °C lower than that of binary Ni-Al. The high-resolution element surface distribution clearly showed the microstructure evolution after controlled annealing and revealed that the rapid oxidation reaction of liquid Mg played a critical role in the occurrence of the thermal explosion reaction in air. During the self-propagating combustion process, the Al12Mg17 additive acted as “ignition spots,” and the Ni-Al intermetallic reaction was ignited by combustion of Mg. The sustained power provided by the Mg combustion promoted the continuous reaction in the Ni-Al matrix. The combustion wave velocity of the Ni-Al-Al12Mg17 material was almost doubled, from 60-100 to 150-200 mm s−1, demonstrating the suitability of the Al12Mg17 additive for enhancing the performance of Ni-Al-based reactive material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.H. Fischer and M.C. Grubelich, A Survey of Combustible Metals, Thermites, and Intermetallics for Pyrotechnic Applications, in 32nd Joint Propulsion Conference and Exhibit, Orlando, FL, USA, 1996

  2. C.T. Wei, E. Vitali, F. Jiang, S.W. Du, D.J. Benson, K.S. Vecchio, N.N. Thadhani, and M.A. Meyers, Quasi-Static and Dynamic Response of Explosively Consolidated Metal-Aluminum Powder Mixtures, Acta Mater., 2012, 60, p 1418-1432

    Article  Google Scholar 

  3. B.B. Aydelotte and N.N. Thadhani, Mechanistic Aspects of Impact Initiated Reactions in Explosively Consolidated Metal + Aluminum Powder Mixtures, Mater. Sci. Eng. A, 2013, 570, p 164-171

    Article  Google Scholar 

  4. A.M. Marquez, C.H. Braithwaite, T.P. Weihs, N.M. Krywopusk, D.J. Gibbins, K.S. Vecchio, and M.A. Meyers, Fragmentation and Constitutive Response of Tailored Mesostructured Aluminum Compacts, J. Appl. Phys., 2016, 119, p 145903

    Article  Google Scholar 

  5. P. Church, R. Claridge, P. Ottley, I. Lewtas, N. Harrison, P. Gould, C. Braithwaite, and D. Williamson, Investigation of a Nickel-Aluminum Reactive Shaped Charge Liner, J. Appl. Mech., 2013, 80, p 031701

    Article  Google Scholar 

  6. G. Byun, J. Kim, C. Lee, S.J. Kim, and S. Lee, Kinetic Spraying Deposition of Reactive-Enhanced Al-Ni Composite for Shaped Charge Liner Applications, J. Therm. Spray Technol., 2016, 25(3), p 483-493

    Article  Google Scholar 

  7. D.B. Nielson, R.M. Truitt, and B.N. Ashcroft, Reactive Material Enhanced Projectiles and Related Methods, U.S. Patent 8,122,833, 2012

  8. A.K. Stover, N.M. Krywopusk, J.D. Gibbins, and T.P. Weihs, Mechanical Fabrication of Reactive Metal Laminate Powders, J. Mater. Sci., 2014, 49, p 5821-5830

    Article  Google Scholar 

  9. A.K. Stover, N.M. Krywopusk, G.M. Fritz, S.C. Barron, J.D. Gibbins, and T.P. Weihs, An Analysis of the Microstructure and Properties of Cold-Rolled Ni:Al Laminate Foils, J. Mater. Sci., 2013, 48, p 5917-5929

    Article  Google Scholar 

  10. X. Qiu, J. Graeter, L. Kecskes, and J. Wang, Exothermic Reactions in Cold-Rolled Ni/Al Reactive Multilayer Foils, J. Mater. Res., 2008, 23, p 367-375

    Article  Google Scholar 

  11. H. Sieber, J.S. Park, J. Weissmüller, and J.H. Perepezko, Structural Evolution and Phase Formation in Cold-Rolled Aluminum-Nickel Multilayers, Acta Mater., 2001, 49, p 1139-1151

    Article  Google Scholar 

  12. E.M. Hunt and M.L. Pantoya, Impact Sensitivity of Intermetallic Nanocomposites: A Study on Compositional and Bulk Density, Intermetallics, 2010, 18, p 1612-1616

    Article  Google Scholar 

  13. K. Morsi, The Diversity of Combustion Synthesis Processing: A Review, J. Mater. Sci., 2012, 47, p 68-92

    Article  Google Scholar 

  14. J.D. Gibbins, A.K. Stover, N.M. Krywopusk, K. Woll, and T.P. Weihs, Properties of Reactive Al:Ni Compacts Fabricated by Radial Forging of Elemental and Alloy Powders, Combust. Flame, 2015, 162, p 4408-4416

    Article  Google Scholar 

  15. D. Adams, Reactive Multilayers Fabricated by Vapor Deposition: A Critical Review, Thin Solid Films, 2015, 576, p 98-128

    Article  Google Scholar 

  16. E. Ma, C.V. Thompson, L.A. Clevenger, and K.N. Tu, Self-Propagating Explosive Reactions in Al/Ni Multilayer Thin Films, Appl. Phys. Lett., 1990, 57, p 1262-1264

    Article  Google Scholar 

  17. A.S. Rogachev, S.G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N.V. Sachkova, and A.S. Mukasyan, Structure Evolution and Reaction Mechanism in the Ni/Al Reactive Multilayer Nanofoils, Acta Mater., 2014, 66, p 86-96

    Article  Google Scholar 

  18. M.D. Grapes and T.P. Weihs, Exploring the Reaction Mechanism in Self-Propagating Al/Ni Multilayers by Adding Inert Material, Combust. Flame, 2016, 172, p 105-115

    Article  Google Scholar 

  19. A. Bacciochini, M.I. Radulescu, Y. Charron-Tousignant, J. Van Dyke, M. Nganbe, M. Yandouzi, J.J. Lee, and B. Jodoin, Enhanced Reactivity of Mechanically-Activated Nano-scale Gasless Reactive Materials Consolidated by Coldspray, Surf. Coat. Technol., 2012, 206, p 4343-4348

    Article  Google Scholar 

  20. S.W. Dean, J.K. Potter, R.A. Yetter, T.J. Eden, V. Champagne, and M. Trexler, Energetic Intermetallic Materials Formed by Cold Spray, Intermetallics, 2013, 43, p 121-130

    Article  Google Scholar 

  21. F. Gärtner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15, p 223-232

    Article  Google Scholar 

  22. A. Bacciochini, M.I. Radulescu, M. Yandouzi, G. Maines, J.J. Lee, and B. Jodoin, Reactive Structural Materials Consolidated by Cold Spray: Al-CuO Thermite, Surf. Coat. Technol., 2013, 226, p 60-67

    Article  Google Scholar 

  23. C. Lee and J. Kim, Microstructure of Kinetic Spray Coatings: A Review, J. Therm. Spray Technol., 2015, 24(4), p 592-610

    Article  Google Scholar 

  24. V.K. Champagne, The Cold Spray Materials Deposition Process, Woodhead, Cambridge, 2007, p 63-70

    Book  Google Scholar 

  25. R.N. Raoelison, Ch. Verdy, and H. Liao, Cold Gas Dynamic Spray Additive Manufacturing Today: Deposit Possibilities, Technological Solutions and Viable Applications, Mater. Des., 2017, 133, p 266-287

    Article  Google Scholar 

  26. B.B. Aydelotte, Fragmentation and Reaction of Structural Energetic Materials, Ph.D. Dissertation, Georgia Institute of Technology, 2013

  27. H. Lee, H. Shin, S. Lee, and K. Ko, Effect of Gas Pressure on Al Coatings by Cold Gas Dynamic Spray, Mater. Lett., 2008, 62, p 1579-1581

    Article  Google Scholar 

  28. H.L. Zhao, C.W. Tan, X.D. Yu, X.J. Ning, Z.H. Nie, H.N. Cai, F.C. Wang, and Y. Cui, Enhanced Reactivity of Ni-Al Reactive Material Formed by Cold Spraying Combined with Cold-Pack Rolling, J. Alloys Compd., 2018, 741, p 883-894

    Article  Google Scholar 

  29. K.V. Manukyan, B.A. Mason, L.J. Groven, Y.C. Lin, M. Cherukara, S.F. Son, A. Strachan, and A.S. Mukasyan, Tailored Reactivity of Ni + Al Nanocomposites: Microstructural Correlations, J. Phys. Chem. C, 2012, 116, p 21027-21038

    Article  Google Scholar 

  30. A. Bacciochini, S. Bourdon-Lafleur, C. Poupart, M. Radulescu, and B. Jodoin, Ni-Al Nanoscale Energetic Materials: Phenomena Involved during the Manufacturing of Bulk Samples by Cold Spray, J. Therm. Spray Technol., 2014, 23, p 1142-1148

    Article  Google Scholar 

  31. B.E. Homan, K.L. McNesby, J. Ritter, J. Colburn, A. Brant, and R. Pandey, Investigations of the Energy Release Mechanisms of Aluminum-Nickel Reactive Material System, The U.S. Army Research Laboratory, Orlando, 2008

    Google Scholar 

  32. Y.L. Shoshin, R.S. Mudryy, and E.L. Dreizin, Preparation and Characterization of Energetic Al-Mg Mechanical Alloy Powders, Combust. Flame, 2002, 128, p 259-269

    Article  Google Scholar 

  33. Y.L. Shoshin and E.L. Dreizin, Particle Combustion Rates for Mechanically Alloyed Al-Ti and Aluminum Powders Burning in Air, Combust. Flame, 2006, 145, p 714-722

    Article  Google Scholar 

  34. Y. Wang, W. Jiang, X.F. Zhang, H.Y. Liu, Y.Q. Liu, and F.S. Li, Energy Release Characteristics of Impact-Initiated Energetic Aluminum-Magnesium Mechanical Alloy Particles with Nanometer-Scale Structure, Thermochim. Acta, 2011, 512, p 233-239

    Article  Google Scholar 

  35. K.R. Overdeep, K.J.T. Livi, D.J. Allen, N.G. Glumac, and T.P. Weihs, Using Magnesium to Maximize Heat Generated by Reactive Al/Zr Nanolaminates, Combust. Flame, 2015, 162, p 2855-2864

    Article  Google Scholar 

  36. T.A. Roberts, R.L. Burton, and H. Krier, Ignition and Combustion of Aluminummagnesium Alloy Particles in O2 at High Pressures, Combust. Flame, 1993, 92, p 125-143

    Article  Google Scholar 

  37. J. Ragani, P. Donnadieu, C. Tassin, and J.J. Blandin, High-Temperature Deformation of the Γ-Mg17Al12 Complex Metallic Alloy, Scr. Mater., 2011, 65, p 253-256

    Article  Google Scholar 

  38. H.Y. Bu, M. Yandouzi, C. Lu, D. MacDonald, and B. Jodoin, Cold Spray Blended Al + Mg17Al12 Coating for Corrosion Protection of AZ91D Magnesium Alloy, Surf. Coat. Technol., 2012, 207, p 155-162

    Article  Google Scholar 

  39. L. Plazanet and F. Nardou, Reaction Process during Relative Sintering of NiAl, J. Mater. Sci., 1998, 33, p 2129-2136

    Article  Google Scholar 

  40. M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994

    Book  Google Scholar 

  41. E.G. Colgan and J.W. Mayer, Initial Phase Formation and Dissociation in the Thin-Film Ni/Al System, J. Appl. Phys., 1985, 58, p 4125-4129

    Article  Google Scholar 

  42. A.A. Nayeb-Hashemi and J.B. Clark, The Mg-Ni (Magnesium-Nickel) System, Bull. Alloy Phase Diagr., 1985, 6, p 238-244

    Article  Google Scholar 

  43. H.T. Huang, M.S. Zou, X.Y. Guo, R.J. Yang, and Y.K. Li, Analysis of the Aluminum Reaction Efficiency in a Hydro-Reactive Fuel Propellant Used for a Water Ramjet, Combust. Explos. Shock Waves, 2013, 49, p 541-547

    Article  Google Scholar 

  44. J. Won, G. Bae, K. Kang, C. Lee, S.J. Kim, K.A. Lee, and S. Lee, Bonding, Reactivity, and Mechanical Properties of the Kinetic-Sprayed Deposition of Al for a Thermally Activated Reactive Cu Liner, J. Therm. Spray Technol., 2014, 23(5), p 818-826

    Article  Google Scholar 

  45. F. Czerwinski, The Oxidation Behaviour of an AZ91D Magnesium Alloy at High Temperatures, Acta Mater., 2002, 50, p 2639-2654

    Article  Google Scholar 

  46. H.X. Dong, Y. Jiang, Y.H. He, M. Song, J. Zou, N.P. Xu, B.Y. Huang, C.T. Liu, and P.K. Liaw, Formation of Porous Ni-Al Intermetallics through Pressureless Reaction Synthesis, J. Alloys Compd., 2009, 484, p 907-913

    Article  Google Scholar 

  47. K. Morsi, Reaction Synthesis Processing of Ni-Al Intermetallic Materials, Mater. Sci. Eng. A, 2001, 299, p 1-15

    Article  Google Scholar 

  48. M. Schoenitz and E.L. Dreizin, Oxidation Processes and Phase Changes in Metastable Al-Mg Alloys, J. Propuls. Power, 2004, 20, p 1064-1068

    Article  Google Scholar 

  49. E.I. Popov, L.Y. Kashporov, V.M. Mal’tsev, and A.L. Breiter, Combustion Mechanism of Aluminum-Magnesium Alloy Particles, Combust. Explos. Shock Waves, 1973, 9, p 204-208

    Article  Google Scholar 

  50. Y. Aly and E.L. Dreizin, Ignition and Combustion of Al·Mg Alloy Powders Prepared by Different Techniques, Combust. Flame, 2015, 162, p 1440-1447

    Article  Google Scholar 

  51. Q.C. Fan, H.F. Chai, and Z.H. Jin, Dissolution–Precipitation Mechanism of Self-Propagating High-Temperature Synthesis of Mononickel Aluminide, Intermetallics, 2001, 9, p 609-619

    Article  Google Scholar 

  52. R.H. Chen, C. Suryanarayana, and M. Chaos, Combustion Characteristics of Mechanically Alloyed Ultrafine-Grained Al-Mg Powders, Adv. Eng. Mater., 2006, 8, p 563-567

    Article  Google Scholar 

  53. Y. Aly, M. Schoenitz, and E.L. Dreizin, Ignition and Combustion of Mechanically Alloyed Al-Mg Powders with Customized Particle Sizes, Combust. Flame, 2013, 160, p 835-842

    Article  Google Scholar 

  54. Z.A. Munir and U. Anselmi-Tamburini, Self-Propagating Exothermic Reactions: The Synthesis of High-Temperature Materials by Combustion, Mater. Sci. Rep., 1989, 3, p 279-365

    Article  Google Scholar 

  55. W.M. Haynes, CRC Handbook of Chemistry and Physics, 93rd ed., CRC, Boca Raton, 2012

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the State Key Laboratory of Tribology (SKLT) in Tsinghua University for technical support in the high-resolution component analysis. We also thank LetPub (www.letpub.com) for linguistic assistance during the preparation of this manuscript. This work was supported by the National Natural Science Foundation of China (51671031).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengwen Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Ning, X., Tan, C. et al. Influence of Al12Mg17 Additive on Performance of Cold-Sprayed Ni-Al Reactive Material. J Therm Spray Tech 28, 780–793 (2019). https://doi.org/10.1007/s11666-019-00848-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00848-2

Keywords

Navigation