Skip to main content

Advertisement

Log in

Laser 3D Printing of Fe-Based Bulk Metallic Glass: Microstructure Evolution and Crack Propagation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work presents a comprehensive study of microstructure evolution, crack development and hardness performance of Fe-based bulk metallic glass parts processed by laser 3D printing. The combination of a low scan speed and high energy density generates a low temperature gradient, leading to supercooling and the formation of coarse dendrite and cellular crystal microstructure. Columnar dendrites grow in a single direction with large stress, and cracks are easily formed between the dendrites. The stress intensity factor (SIF) caused by the crack surface tension is small, the crack healing effect is weak, and it is difficult to prevent crack propagation. Cellular grain growth is uniform and more easily accommodates the strain, preventing crack initiation and propagation. In contrast, use of a high scan speed with low energy input produces a fine and uniform dendrite or even nanocrystalline, microstructure with microcracks. The SIF caused by the crack surface tension is large, and the crack healing effect is strong and prevents crack initiation and propagation. For low energy density, the hardness of the sample is similar to the hardness of the cast amorphous. This result indicates that the printing sample retained some amorphous characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Wang, C. Zhang, P. Xu, M. Yasir, and L. Liu, Enhancement of Oxidation and Wear Resistance of Fe-Based Amorphous Coatings by Surface Modification of Feedstock Powders, Mater. Des., 2015, 73, p 35–41

    Article  Google Scholar 

  2. W. Guo, J. Zhang, Y. Wu, S. Hong, and Y. Qin, Fabrication and Characterization of Fe-Based Amorphous Coatings Prepared by High-Velocity Arc Spraying, Mater. Des., 2015, 78(12), p 118–124

    Article  Google Scholar 

  3. S.F. Guo, J.L. Qiu, P. Yu, S.H. Xie, and W. Chen, Fe-Based Bulk Metallic Glasses: Brittle or Ductile?, Appl. Phys. Lett., 2014, 105(16), p 4067–4074

    Article  Google Scholar 

  4. X.P. Li, C.W. Kang, H. Huang, L.C. Zhang, and T.B. Sercombe, Selective Laser Melting of an Al 86Ni6 Y4.5Co2La1.5, Metallic Glass: Processing, Microstructure Evolution and Mechanical Properties, Mater. Sci. Eng. A, 2014, 606(2), p 370–379

    Article  Google Scholar 

  5. H. Sun and K.M. Flores, Spherulitic Crystallization Mechanism of a Zr-Based Bulk Metallic Glass During Laser Processing, Intermetallics, 2013, 43(12), p 53–59

    Article  Google Scholar 

  6. G. Yang, X. Lin, F. Liu, Q. Hu, and L. Ma, Laser Solid Forming Zr-Based Bulk Metallic Glass, Intermetallics, 2012, 22(3), p 110–115

    Article  Google Scholar 

  7. S. Pauly, L. Löber, R. Petters, M. Stoica, S. Scudino, U. Kuhn, and J. Eckert, Processing Metallic Glasses by Selective Laser Melting, Mater. Today, 2013, 16(1-2), p 37–41

    Article  Google Scholar 

  8. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 57(3), p 133–164

    Article  Google Scholar 

  9. Y. Lu, H. Zhang, H. Li, H. Xu, G. Huang, Z. Qin, and X. Lu, Crystallization Prediction on Laser Three-Dimensional Printing of Zr-Based Bulk Metallic Glass, J. Non-Cryst. Solids, 2017, 461, p 12–17

    Article  Google Scholar 

  10. H.Y. Jung, J.C. Su, K.G. Prashanth, M. Stoica, S. Scudion, S. Yi, U. Kuhn, D.H. Kin, K.B. Kin, and J. Eckert, Fabrication of Fe-Based Bulk Metallic Glass by Selective Laser Melting: A Parameter Study, Mater. Des., 2015, 86, p 703–708

    Article  Google Scholar 

  11. X.P. Li, C.W. Kang, H. Huang, and T.B. Sercombe, The Role of a Low-Energy–Density Re-Scan in Fabricating Crack-Free Al85Ni5Y6Co2Fe2, Bulk Metallic Glass Composites Via Selective Laser Melting, Mater. Des., 2014, 63(2), p 407–411

    Article  Google Scholar 

  12. E.C. Santos, M. Shiomi, K. Osakada, and T. Laoui, Rapid Manufacturing of Metal Components by Laser Forming, Int. J. Mach. Tools Manuf., 2006, 46(12-13), p 1459–1468

    Article  Google Scholar 

  13. N.K. Tolochko, K.I. Arshchinov, S.Z. Mozzharov, Y.V. Khlopkov, N.V. Sobolenko, and I.A. Yadroitsev, Selective l.aser si.ntering of com.pacted pow.ders, Powder Metall. Met. Ceram., 1998, 37(7-8), p 365–368

    Article  Google Scholar 

  14. J. Zhang and R.F. Singer, Hot tearing of nickel-based superalloys During Directional Solidification, Acta Mater., 2002, 50(7), p 1869–1879

    Article  Google Scholar 

  15. D. Ma, H. Tan, D. Wang, Y. Li, and E. Ma, Strategy for Pinpointing the Best Glass-Forming Alloys, Appl. Phys. Lett., 2005, 86(19), p 279–283

    Article  Google Scholar 

  16. Q.J. Chen, J. Shen, D.L. Zhang, H.B. Fan, and J.F. Sun, Mechanical Performance and Fracture Behavior of Fe41Co7Cr15Mo14Y2C15B6 Bulk Metallic Glass, J. Mater. Res., 2007, 22(2), p 358–363

    Article  Google Scholar 

  17. S.S. Joshi, A.V. Gkriniari, S. Katakam, and N.B. Dahotre, Dynamic Crystallization During Non-isothermal Laser Treatment of Fe–Si–B Metallic Glass, J. Phys. D Appl. Phys., 2015, 48(49), p 495501

    Article  Google Scholar 

  18. D. Ouyang, N. Li, W. Xing, Z. Zhang, and L. Liu, 3D Printing of Crack-Free High Strength Zr-Based Bulk Metallic Glass Composite by Selective Laser Melting, Intermetallics, 2017, 90, p 128–134

    Article  Google Scholar 

  19. S. Katakam, S. Santhanakrishnan, H. Vora, Y.J. Hwang, R. Banerjee, and N.B. Dahotre, Stress-Induced Selective Nano-Crystallization in Laser-Processed Amorphous Fe–Si–B Alloys, Philos. Mag. Lett., 2012, 92(11), p 617–624

    Article  Google Scholar 

  20. I. Yadroitsev, P. Bertrand, and I. Smurov, Parametric Analysis of the Selective Laser Melting Process, Appl. Surf. Sci., 2007, 253(19), p 8064–8069

    Article  Google Scholar 

  21. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, and C. Tuck, Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting, Addit. Manuf., 2014, 1-4, p 77–86

    Article  Google Scholar 

  22. N.J. Harrison, I. Todd, and K. Mumtaz, Reduction of Micro-cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach, Acta Mater., 2015, 94, p 59–68

    Article  Google Scholar 

  23. D. Wang, C. Yu, J. Ma, W. Liu, and Z. Shen, Densification and Crack Suppression in Selective Laser Melting of Pure Molybdenum, Mater. Des., 2017, 129, p 44–52

    Article  Google Scholar 

  24. C.Y. Hui, T. Liu, and M.E. Schwaab, How Does Surface Tension Affect Energy Release Rate of Cracks Loaded in Mode I?, Extreme Mech. Lett., 2016, 6, p 31–36

    Article  Google Scholar 

  25. A.I. Rusanov, Surface Thermodynamics of Cracks, Surf. Sci. Rep., 2012, 67(5), p 117–140

    Article  Google Scholar 

  26. G.F. Wang and Y. Li, Influence of Surface Tension on Mode-I, Crack Tip Field, Eng. Fract. Mech., 2013, 109(3), p 290–301

    Article  Google Scholar 

  27. Y. Li and G.F. Wang, Influence of Surface Tension on Mixed-Mode Cracks, Int. J. Appl. Mech., 2015, 7(05), p 155007–1550031

    Article  Google Scholar 

  28. W.A. Tiller, K.A. Jackson, J.W. Rutter, and B. Chalmers, The Redistribution of Solute Atoms During the Solidification of Metals, Acta Metall., 1953, 1(4), p 428–437

    Article  Google Scholar 

  29. M. Rappaz, J.M. Drezet, and M. Gremaud, A New Hot-Tearing Criterion, Metall. Mater. Trans. A, 1999, 30(2), p 449–455

    Article  Google Scholar 

  30. C.M. Gourlay and A.K. Dahle, Dilatant Shear Bands in Solidifying Metals, Nature, 2007, 445(7123), p 70–73

    Article  Google Scholar 

  31. L. Yuan, C. O’Sullivan, and C.M. Gourlay, Exploring Dendrite Coherency with the Discrete Element Method, Acta Mater., 2012, 60(3), p 1334–1345

    Article  Google Scholar 

  32. C. Suryanarayana and A. Inoue, Bulk Metallic Glasses, Phys. Today, 2010, 66(2), p 32–37

    Google Scholar 

  33. A. Vladimir, M.Dušan Blagojević, Tomáš Žák Minić, and D.M. Minic, Influence of Thermal Treatment on Structure and Microhardness of FeNiSiBC Amorphous Alloy, Intermetallics, 2011, 19(12), p 1780–1785

    Article  Google Scholar 

  34. D.M. Minić, V. Blagojević, D.G. Minić, A. Gavrilović, and L. Rafailović, Influence of Thermally Induced Structural Transformations on Hardness in Fe89.8Ni1.5Si5.2B3C0.5 Amorphous Alloy, J. Alloys Compd., 2011, 509(33), p 8350–8355

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51741105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, F., Chen, Q., Gao, J. et al. Laser 3D Printing of Fe-Based Bulk Metallic Glass: Microstructure Evolution and Crack Propagation. J. of Materi Eng and Perform 28, 3478–3486 (2019). https://doi.org/10.1007/s11665-019-04103-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04103-1

Keywords

Navigation