Skip to main content
Log in

Effects of Stress Ratio and Microstructure on Fatigue Failure Behavior of Polycrystalline Nickel Superalloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of microstructure and stress ratio on high cycle fatigue of nickel superalloy Nimonic 80A were investigated. The stress ratios of 0.1, 0.5 and 0.8 were chosen to perform fatigue tests in a frequency of 110 Hz. Cleavage failure was observed, and three competing failure crack initiation modes were discovered by a scanning electron microscope, which were classified as surface without facets, surface with facets and subsurface with facets. With increasing the stress ratio from 0.1 to 0.8, the occurrence probability of surface and subsurface with facets also increased and reached the maximum value at R = 0.5, meanwhile the probability of surface initiation without facets decreased. The effect of microstructure on the fatigue fracture behavior at different stress ratios was also observed and discussed. Based on the Goodman diagram, it was concluded that the fatigue strength of 50% probability of failure at R = 0.1, 0.5 and 0.8 is lower than the modified Goodman line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Miao, T.M. Pollock, and J. Wayne Jones, Microstructural Extremes and the Transition from Fatigue Crack Initiation to Small Crack Growth in a Polycrystalline Nickel-Base Superalloy, Acta Mater., 2012, 60(6), p 2840–2854

    Article  Google Scholar 

  2. B. Larrouy, P. Villechaise, J. Cormier, and O. Berteaux, Grain Boundary–Slip Bands Interactions: Impact on the Fatigue Crack Initiation in a Polycrystalline Forged Ni-Based Superalloy, Acta Mater., 2015, 99, p 325–336

    Article  Google Scholar 

  3. T. Nicholas and J.R. Zuiker, On the Use of the Goodman Diagram for High Cycle Fatigue Design, Int. J. Fract., 1996, 80(2–3), p 219–235

    Article  Google Scholar 

  4. B.A. Cowles, High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective, Int. J. Fract., 1996, 80(2), p 147–163

    Article  Google Scholar 

  5. T. Nicholas, Critical Issues in High Cycle Fatigue, Int. J. Fatigue, 1999, 21(99), p S221–S231

    Article  Google Scholar 

  6. H. Oguma and T. Nakamura, Fatigue Crack Propagation Properties of Ti-6Al-4 V in Vacuum Environments, Int. J. Fatigue, 2013, 50, p 89–93

    Article  Google Scholar 

  7. Y. Gao, M. Kumar, R.K. Nalla, and R.O. Ritchie, High-Cycle Fatigue of Nickel-Based Superalloy ME3 at Ambient and Elevated Temperatures: Role of Grain-Boundary Engineering, Metall. Mater. Trans. A, 2005, 36A(12), p 3325–3333

    Article  Google Scholar 

  8. M.J. Caton and S.K. Jha, Small Fatigue Crack Growth and Failure Mode Transitions in a Ni-Base Superalloy at Elevated Temperature, Int. J. Fatigue, 2010, 32(9), p 1461–1472

    Article  Google Scholar 

  9. X. Huang, L. Wang, Y. Hu, G. Guo, D. Salmon, Y. Li, and W. Zhao, Fatigue Crack Propagation Behavior of Ni-Based Superalloys After Overloading at Elevated Temperatures, Progr. Nat. Sci. Mat. Int., 2016, 26(2), p 197–203

    Article  Google Scholar 

  10. K.S. Chan, Roles of Microstructure in Fatigue Crack Initiation, Int. J. Fatigue, 2010, 32(9), p 1428–1447

    Article  Google Scholar 

  11. S.R. Yeratapally, M.G. Glavicic, M. Hardy, and M.D. Sangid, Microstructure Based Fatigue Life Prediction Framework for Polycrystalline Nickel-Base Superalloys with Emphasis on the Role Played by Twin Boundaries in Crack Initiation, Acta Mater., 2016, 107, p 152–167

    Article  Google Scholar 

  12. T. Alp and A. Wazzan, The Influence of Microstructure on the Tensile and Fatigue Behavior of SAE 6150 Steel, J. Mater. Eng. Perform., 2002, 11(4), p 351–359

    Article  Google Scholar 

  13. J. Liu, Q. Zhang, Z. Zuo, and Y. Xiong, Effect of Fatigue Behavior on Microstructural Features in a Cast Al-12Si-CuNiMg Alloy Under High Cycle Fatigue Loading, J. Mater. Eng. Perform., 2013, 22(12), p 3834–3839

    Article  Google Scholar 

  14. K. Tamada, T. Kakiuchi, and Y. Uematsu, Crystallographic Analysis of Fatigue Crack Initiation Behavior in Coarse-Grained Magnesium Alloy Under Tension-Tension Loading Cycles, J. Mater. Eng. Perform., 2017, 26(7), p 3169–3179

    Article  Google Scholar 

  15. B. Oberwinkler, Modeling the Fatigue Crack Growth Behavior of Ti-6Al-4 V by Considering Grain Size and Stress Ratio, Mater. Sci. Eng. A, 2011, 528(18), p 5983–5992

    Article  Google Scholar 

  16. X. Liu, C. Sun, and Y. Hong, Effects of Stress Ratio on High-Cycle and Very-High-Cycle Fatigue Behavior of a Ti–6Al–4 V Alloy, Mater. Sci. Eng. A, 2015, 622, p 228–235

    Article  Google Scholar 

  17. L. Bertini, L. Le Bone, C. Santus, F. Chiesi, and L. Tognarelli, High Load Ratio Fatigue Strength and Mean Stress Evolution of Quenched and Tempered 42CrMo4 Steel, J. Mater. Eng. Perform., 2017, 26(8), p 3784–3793

    Article  Google Scholar 

  18. O. Hatamleh, S. Forth, and A.P. Reynolds, Fatigue Crack Growth of Peened Friction Stir-Welded 7075 Aluminum Alloy under Different Load Ratios, J. Mater. Eng. Perform., 2010, 19(1), p 99–106

    Article  Google Scholar 

  19. S.D. Antolovich, Microstructural Aspects of Fatigue in Ni-Base Superalloys, Philos. Trans., 2015, 373, p 2038

    Google Scholar 

  20. J. Miao, T.M. Pollock, and J. Wayne Jones, Crystallographic Fatigue Crack Initiation in Nickel-Based Superalloy René 88DT at Elevated Temperature, Acta Mater., 2009, 57(20), p 5964–5974

    Article  Google Scholar 

  21. G.L. Miao, X.G. Yang, and D.Q. Shi, Competing Fatigue Failure Behaviors of Ni-Based Superalloy FGH96 at Elevated Temperature, Mat. Sci. Eng. A Struct., 2016, 668, p 66–72

    Article  Google Scholar 

  22. K.O. Findley and A. Saxena, Low Cycle Fatigue in Rene 88DT at 650 °C: Crack Nucleation Mechanisms and Modeling, Metall. Mat. Trans. A, 2006, 37(5), p 1469–1475

    Article  Google Scholar 

  23. S.K. Jha, J.M. Larsen, and A.H. Rosenberger, Towards a Physics-Based Description of Fatigue Variability Behavior in Probabilistic Life-Prediction, Eng. Fract. Mech., 2009, 76(5), p 681–694

    Article  Google Scholar 

  24. S.K. Jha, M.J. Caton, and J.M. Larsen, A New Paradigm of Fatigue Variability Behavior and Implications for Life Prediction, Mater. Sci. Eng. A, 2007, 468–470, p 23–32

    Article  Google Scholar 

  25. Metallic Materials—Fatigue Testing—Axial Force-Controlled Method, ISO 1099:2006, International Organization for Standardization 2006

  26. X. Liu, C. Sun, and Y. Hong, Faceted Crack Initiation Characteristics for High-Cycle and Very-High-Cycle Fatigue of a Titanium Alloy Under Different Stress Ratios, Int. J. Fatigue, 2016, 92, p 434–441

    Article  Google Scholar 

  27. K. Manigandan, T.S. Srivatsan, T. Quick, S. Sastry, and M.L. Schmidt, Influence of Microstructure and Load Ratio on Cyclic Fatigue and Final Fracture Behavior of Two High Strength Steels, Mater. Des., 2014, 55, p 727–739

    Article  Google Scholar 

  28. A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of Metals I: Brittle and Ductile Fracture, Acta Mater., 2016, 107, p 424–483

    Article  Google Scholar 

  29. S.K. Jha, J.M. Larsen, A.H. Rosenberger, and G.A. Hartman, Dual Fatigue Failure Modes in Ti–6Al–2Sn–4Zr–6Mo and Consequences on Probabilistic Life Prediction, Scripta Mater., 2003, 48(12), p 1637–1642

    Article  Google Scholar 

  30. S.K. Jha, J.M. Larsen, and A.H. Rosenberger, The Role of Competing Mechanisms in the Fatigue Life Variability of a Nearly Fully-Lamellar γ-TiAl Based Alloy, Acta Mater., 2005, 53(5), p 1293–1304

    Article  Google Scholar 

  31. A.H. Fischer, A. Abel, M. Lepper, A.E. Zitzelsberger, and A. von Glasow, Modeling Bimodal Electromigration Failure Distributions, Microelectron. Reliab., 2001, 41(3), p 445–453

    Article  Google Scholar 

  32. S. Tanaka, M. Ichikawa, and S. Akita, A Probabilistic Investigation of Fatigue Life and Cumulative Cycle Ratio, Eng. Fract. Mech., 1984, 20(3), p 501–513

    Article  Google Scholar 

  33. P.J. Laz, B.A. Craig, and B.M. Hillberry, A Probabilistic Total Fatigue Life Model Incorporating Material Inhomogeneities, Stress Level and Fracture Mechanics, Int. J. Fatigue, 2001, 23(1), p 119–127

    Article  Google Scholar 

  34. S. Stanzl-Tschegg and B. Schönbauer, Near-Threshold Fatigue Crack Propagation and Internal Cracks in Steel, Procedia Eng., 2010, 2(1), p 1547–1555

    Article  Google Scholar 

  35. R.H.V. Stone, T.B. Cox, J.R. Low, and J.A. Psioda, Microstructural Aspects of Fracture by Dimpled Rupture, Int. Metals Rev., 2013, 30(1), p 157–180

    Google Scholar 

  36. A. Kolyshkin, M. Zimmermann, E. Kaufmann, and H.-J. Christ, Experimental Investigation and Analytical Description of the Damage Evolution in a Ni-Based Superalloy Beyond 106 Loading Cycles, Int. J. Fatigue, 2016, 93, p 272–280

    Article  Google Scholar 

  37. C. Stocker, M. Zimmermann, and H.J. Christ, Localized Cyclic Deformation and Corresponding Dislocation Arrangements of Polycrystalline Ni-Base Superalloys and Pure Nickel in the VHCF Regime, Int. J. Fatigue, 2011, 33(1), p 2–9

    Article  Google Scholar 

  38. C. Blochwitz, R. Richter, W. Tirschler, and K. Obrtlik, The Effect of Local Textures on Microcrack Propagation in Fatigued F.C.C. Metals, Mater. Sci. Eng. A, 1997, 234, p 563–566

    Article  Google Scholar 

  39. S.E. Stanzl-Tschegg, O. Plasser, E.K. Tschegg, and A.K. Vasudevan, Influence of Microstructure and Load Ratio on Fatigue Threshold Behavior in 7075 Aluminum Alloy, Int. J. Fatigue, 1999, 21, p S255–S262

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Research Foundation of China (Nos. 11327801, 11502151, 11572057), the Program for Changjiang Scholars and Innovative Research Team (No. IRT14R37), and Key Science and Technology Support Program of Sichuan Province (No. 2015JPT0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Y. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Guan, Z.W., Wang, Q.Y. et al. Effects of Stress Ratio and Microstructure on Fatigue Failure Behavior of Polycrystalline Nickel Superalloy. J. of Materi Eng and Perform 27, 2534–2544 (2018). https://doi.org/10.1007/s11665-018-3331-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3331-9

Keywords

Navigation