Skip to main content

Advertisement

Log in

Microstructures and Mechanical Properties of Binary Al-Zn Alloys Fabricated by Casting and Heat Treatment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 04 May 2023

This article has been updated

Abstract

Binary Al-Zn alloys with different Zn contents were fabricated by casting and heat treatment. Analysis of mechanical properties showed that the hardness and tensile strength of Al-Zn alloys increased with increased Zn content, with the post-heat treatment hardness and ultimate tensile strength of Al-49Zn alloy reaching as high as 152 HV and 330 MPa, respectively. Meanwhile, the plasticity and toughness of Al-Zn alloys decreased with increased Zn content. Solid-solution strengthening was the main strengthening mechanism for Al-Zn alloys, and Orowan strengthening was also observed in Al-49Zn alloy. The fracture mode of Al-20Zn and Al-35Zn alloys was ductile, whereas Al-20Zn alloy showed good impact toughness. This work provided a basis for further improving the cast component design of the Al-Zn-X system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. I. Černý, J. Sís, and D. Mikulová, Short Fatigue Crack Growth in an Aircraft Al-Alloy of a 7075 Type After Shot Peening, Surf. Coat. Technol., 2014, 243(12), p 20–27

    Google Scholar 

  2. Ł. Kaczmarek, M. Stegliński, J. Sawicki, J. Świniarski, D. Batory, K. Kyzioł, Ł. Kołodziejczyk, W. Szymański, P. Zawadzki, and D. Kottfer, Optimization of the Heat Treatment and Tribological Properties of 2024 and 7075 Aluminium Alloys, Arch. Metall. Mater., 2013, 58(2), p 535–540

    Article  Google Scholar 

  3. K. Kyzioł, K. Koper, M. Środa, M. Klich, and Ł. Kaczmarek, Influence of Gas Mixture during N+ Ion Modification Under Plasma Conditions on Surface Structure and Mechanical Properties of Al-Zn Alloys, Surf. Coat. Technol., 2015, 278(6), p 30–37

    Article  Google Scholar 

  4. K. Bewilogua, G. Bräuer, A. Dietz, J. Gäbler, G. Goch, B. Karpuschewski, and B. Szyszka, Surface Technology for Automotive Engineering, CIRP Ann. Manuf. Technol., 2009, 58(2), p 608–627

    Article  Google Scholar 

  5. S.L. Pramod, A.K. Prasada Rao, B.S. Murty, and S.R. Bakshi, Effect of Sc Addition on the Microstructure and Wear Properties of A356 Alloy and A356-TiB2 In Situ Composite, Mater. Des., 2015, 78, p 85–94

    Article  Google Scholar 

  6. W.D. Zhang, Y. Liu, J. Yang, J.Z. Dang, H. Xu, and Z.M. Du, Effects of Sc Content on the Microstructure of As-Cast Al-7wt.% Si Alloys, Mater. Charact., 2012, 66, p 104–110

    Article  Google Scholar 

  7. J.J. Wang, Z.M. Zhang, A.B. Phillion, S.Z. Shang, and G.M. Lu, Alloy Development and Reheating Process Exploration of Al-Si Casting Alloys with Globular Grains for Thixoforming, J. Mater. Res., 2016, 31(16), p 2482–2492

    Article  Google Scholar 

  8. Y. Zheng, W.L. Xiao, S.J. Ge, W.T. Zhao, S.J. Hanada, and C.L. Ma, Effects of Cu Content and Cu/Mg Ratio on the Microstructure and Mechanical Properties of Al-Si-Cu-Mg Alloys, J. Alloys Compd., 2015, 649, p 291–296

    Article  Google Scholar 

  9. R. Chen, Q.Y. Xu, H.T. Guo, Z.Y. Xia, Q.F. Wu, and B.C. Liu, Modeling the Precipitation Kinetics and Tensile Properties in Al-7Si-Mg Cast Aluminum Alloys, Mater. Sci. Eng. A, 2017, 685, p 403–416

    Article  Google Scholar 

  10. T.B. Massalski, Alloy Phase diagrams, Materials Park, OH, ASM International, 1993, p 239

    Google Scholar 

  11. X. Sauvage, M.Y. Murashkin, B.B. Straumal, E.V. Bobruk, and R.Z. Valiev, Ultrafine Grained Structures Resulting from SPD-Induced Phase Transformation in Al-Zn Alloys, Adv. Eng. Mater., 2015, 17(12), p 1821–1827

    Article  Google Scholar 

  12. A.A. Mazilkin, B.B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S.G. Protasova, O.A. Kogtenkova, and R.Z. Valiev, Softening of Nanostructured Al-Zn and Al-Mg Alloys After Severe Plastic Deformation, Acta Mater., 2006, 54(15), p 3933–3939

    Article  Google Scholar 

  13. N.Q. Chinh, P. Jenei, J. Gubicza, E.V. Bobruk, R.Z. Valievb, and T.G. Langdon, Influence of Zn Content on the Microstructure and Mechanical Performance of Ultrafine-Grained Al-Zn Alloys Processed by High-Pressure Torsion, Mater. Lett., 2017, 186, p 334–337

    Article  Google Scholar 

  14. W.B. Zhou, C.Y. Liu, P.F. Yu, B. Zhang, Z.Y. Ma, K. Luo, M.Z. Ma, and R.P. Liu, Effect of Scandium on Microstructure and Mechanical Properties of High Zinc Concentration Aluminum Alloys, Mater. Charact., 2017, 127, p 371–378

    Article  Google Scholar 

  15. S.S. Shin, K.M. Lim, and I.M. Park, Characteristics and Microstructure of Newly Designed Al-Zn-Based Alloys for the Die-Casting Process, J. Alloys Compd., 2016, 671, p 517–526

    Article  Google Scholar 

  16. C.Y. Liu, B. Qu, Z.Y. Ma, M.Z. Ma, and R.P. Liu, Recrystallization, Precipitation, and Resultant Mechanical Properties of Rolled Al-Zn Alloy After Aging, Mater. Sci. Eng. A, 2016, 657, p 284–290

    Article  Google Scholar 

  17. C.Y. Liu, M.Z. Ma, R.P. Liu, and K. Luo, Evaluation of Microstructure and Mechanical Properties of Al-Zn Alloy During Rolling, Mater. Sci. Eng. A, 2016, 654, p 436–441

    Article  Google Scholar 

  18. C.Y. Liu, L. Yu, M.Z. Ma, R.P. Liu, and Z.Y. Ma, Dynamic Precipitation of Al-Zn Alloy During Rolling and Accumulative Roll Bonding, Philos. Mag. Lett., 2015, 95(11), p 539–546

    Article  Google Scholar 

  19. C.Y. Liu, H.J. Jiang, C.X. Wang, H.Q. Qi, Y.B. Li, M.Z. Ma, and R.P. Liu, Static and Dynamic Precipitation Behavior of the Al-20wt.% Zn Alloy, Chin. Phys. Lett., 2016, 33(5), p 056101

    Article  Google Scholar 

  20. C.Y. Liu, B. Zhang, P.F. Yu, R. Jing, M.Z. Ma, and R.P. Liu, Microstructures and Mechanical Properties of Al/Zn Composites Prepared by Accumulative Roll Bonding and Heat Treatment, Mater. Sci. Eng. A, 2013, 580, p 36–40

    Article  Google Scholar 

  21. C.Y. Liu, M.Z. Ma, R.P. Liu, L. Yu, and K. Luo, Effect of Zn Particles on Ductility of the Accumulative Roll-Bonding Composites, Sci. China Phys. Mech. Astron., 2015, 58(10), p 104601

    Article  Google Scholar 

  22. B. Dang, C.C. Liu, F. Liu, Y.Z. Liu, and Y.B. Li, Effect of As-Solidified Microstructure on Subsequent Solution-Treatment Process for A356 Al Alloy, Trans. Nonferrous Metal Soc. China, 2016, 26(3), p 634–642

    Article  Google Scholar 

  23. S. Meenia, F. Khan, S. Babu, R.J. Immanuel, and S.K. Panigrahi, Particle Refinement and Fine-Grain Formation Leading to Enhanced Mechanical Behaviour in a Hypo-Eutectic Al-Si Alloy Subjected to Multi-pass Friction Stir Processing, Mater. Charact., 2016, 113, p 134–143

    Article  Google Scholar 

  24. W.M. Jiang, Z.T. Fan, X. Chen, B.J. Wang, and H.B. Wu, Combined Effects of Mechanical Vibration and Wall Thickness on Microstructure and Mechanical Properties of A356 Aluminum Alloy Produced by Expendable Pattern Shell Casting, Mater. Sci. Eng. A, 2014, 619, p 228–237

    Article  Google Scholar 

  25. C.Y. Liu, Q. Wang, Y.Z. Jia, B. Zhang, R. Jing, M.Z. Ma, Q. Jing, and R.P. Liu, Effect of W Particles on the Properties of Accumulatively Roll-Bonded Al/W Composites, Mater. Sci. Eng. A, 2012, 547, p 120–124

    Article  Google Scholar 

  26. C.Y. Liu, Q. Wang, Y.Z. Jia, B. Zhang, R. Jing, M.Z. Ma, Q. Jing, and R.P. Liu, Evaluation of Mechanical Properties of 1060-Al Reinforced with WC Particles via Warm Accumulative Roll Bonding Process, Mater. Des., 2013, 43, p 367–372

    Article  Google Scholar 

  27. C.Y. Liu, P.F. Yu, X.Y. Wang, M.Z. Ma, and R.P. Liu, Preparation of High-Strength Al-Mg-Si-Cu-Fe Alloy via Heat Treatment and Rolling, Int. J. Miner. Met. Mater., 2014, 21(7), p 702–710

    Article  Google Scholar 

  28. D.F. Li, C.X. Cui, X. Wang, Q.Z. Wang, C. Chen, and S.Q. Liu, Microstructure Evolution and Enhanced Mechanical Properties of Eutectic Al-Si Die Cast Alloy by Combined Alloying Mg and La, Mater. Des., 2016, 90, p 820–828

    Article  Google Scholar 

  29. K. Natori, H. Utsunomiya, and T. Tanaka, Improvement in Formability of Semi-Solid Cast Hypoeutectic Al-Si Alloys by Equal-Channel Angular Pressing, J. Mater. Process. Technol., 2017, 240, p 240–248

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Research Program of Science and Technology of Guangxi (No. GKAB16380021), the Guangxi “Bagui” Teams for Innovation, Educational Commission of Guangxi of China (No. KY2015ZD050), and Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Y. Liu or H. J. Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W.B., Teng, G.B., Liu, C.Y. et al. Microstructures and Mechanical Properties of Binary Al-Zn Alloys Fabricated by Casting and Heat Treatment. J. of Materi Eng and Perform 26, 3977–3982 (2017). https://doi.org/10.1007/s11665-017-2852-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2852-y

Keywords

Navigation