Skip to main content
Log in

Characterization and Performance of Magnetron-Sputtered Zirconium Coatings Deposited on 9Cr-1Mo Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Zirconium coatings of different thicknesses have been deposited at 773 K on 9Cr-1Mo steel substrate using pulsed DC magnetron sputtering. These coatings were heat treated in vacuum at two different temperatures (1173 and 1273 K) for one hour. X-ray diffraction (XRD) analysis of Zr-coated samples revealed the formation of α-phase (HCP structure) of Zr. XRD analysis of heat-treated samples show the presence of Zr3Fe and Zr2Fe intermetallics. The lattice parameter of these coatings was calculated, and it matches with the bulk values when the thickness reached 2µm. In order to understand this, crystallite size and strain values of these coatings were calculated from XRD plots employing Williamson-Hall method. In order to assess the performance of the coatings, systematic corrosion tests were carried out. The corrosion current density calculated from the polarization behavior showed that the corrosion current density of the uncoated 9Cr-1Mo steel was higher than the coated sample before and after the heat treatment. Studies using electrochemical impedance spectroscopy confirmed that the coated steel has higher impedance than the uncoated steel. The corrosion resistance of 9Cr1Mo steel had improved after Zr coating. However, the corrosion resistance of the coating after heat treatment decreased when compared to the as-deposited coating. The microstructure and composition of the surface oxide film influence the corrosion resistance of the Zr-coated 9Cr1Mo steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. S. Rao, B.K. Choudhary, T. Jayakumar, K.B.S. Rao, and B. Raj, Int. J. Press. Vessels Pip., 1999, 76, p 275–281

    Article  Google Scholar 

  2. C. Willby and J.J Waller, Proceedings of International Conference on Ferritic Steel for Fast Reactor Steam Generator, London, British Nuclear Society, London, 1977, p 40.

  3. E. Metacalf and B. Scarlin, Proceedings of 6th Liege Conference, Julich, 1998, 5, p 1–32.

  4. P. Carbol, D.H. Wegen, and T. Wiss, Spent Fuel as Waste Material, Compr. Nucl. Mater., 2012, 5, p 389–420

    Article  Google Scholar 

  5. F. Mars Guy, Corrosion Engineering, 3rd ed., Tata McGraw-Hill, NewYork, 2005

    Google Scholar 

  6. A. Singh, P. Kuppusami, R. Thirumurugesan, R. Ramaseshan, M. Kamruddin, S. Dash, V. Ganesan, and E. Mohandas, Study of Microstructure and Nanomechanical Properties of Zr Films Prepared by Pulsed Magnetron Sputtering, Appl. Surf. Sci., 2011, 257, p 9909–9914

    Article  Google Scholar 

  7. H.O. Pierson, New Jersey, USA, 1996, 181. Handbook of Refractory Carbides and Nitrides.

  8. P. Gaunt and J.W. Christian, The Crystallography of the β-α Transformation In Zirconium and in Two Titanium-Molybdenum Alloys, Acta Metall., 1959, 7, p 534–542

    Article  Google Scholar 

  9. E.J. Rapperport, Room Temperature Deformation Processes in Zirconium, Acta Metall., 1959, 7, p 254

    Article  Google Scholar 

  10. L. Kaufman, The Lattice Stability of Titanium, Acta Metall., 1959, 7, p 575

    Article  Google Scholar 

  11. E.S. Fisher, C.J. Renken, Single-Crystal Elastic Moduli and the hcp → bcc Transformation in Ti, Zr, and Hf, Phys. Rev. 1964, 135 (2A), p A482

  12. D.O. Northwood, I.M. London, and L.E. Bahen, Elastic Constants of Zirconium Alloys, J. Nucl. Mater., 1975, 55, p 299–310

    Article  Google Scholar 

  13. Kendall J. Hollis, International Thermal Spray & Surface Engineering, Editors, Robert Gansert, William Jarosinski, Zr diffusion barrier coatings in nuclear reactors Nov. 2010, 5 (4).

  14. F. Abbasi, G.R. Etaati, H. Afarideh, R. Koohi-Fayegh, and G.R. Aslani, Neutron Spectrum Measurement in D+Be Reaction, Iranian J. Phys. Res., 2002, 3(2), p 101

    Google Scholar 

  15. F. AbbasiDavani, R. KoohiFayegh, H. Afaride, G.R. Etaati, and G.R. Aslani, Design, Calibration and Testing of the NRCAM Fast Neutron Spectrometry System, Radiation Measurement, 2003, 37, p 237–245

    Article  Google Scholar 

  16. Lipika Rani Bairi, S. Ningshen, U. Kamachi Mudali and Baldev Raj, Microstructural Analysis and Corrosion Behaviour of D9 Stainless Steel—Zirconium Metal Waste Form Alloys, Corros. Sci., 2010, 52, p 2291–2302

  17. N. Das, Pranesh Sengupta, S. Roychowdhury, G. Sharma, P.S. Gawde, A. Arya, V. Kain, U.D. Kulkarni, J.K. Chakravartty, G.K. Dey, Metallurgical Characterizations of Fe–Cr–Ni–Zr Base Alloys Developed for Geological Disposal of Radioactive Hulls, J. Nucl. Mater., 2012, 420 (1–3), p 559–574

  18. S.M. McDeavitt, and D.P. Abraham (Eds.), Argonne National Laboratory, Preparation and Processing of the Metal Waste Form, ANL-NT-121, June 1999, Pi-l.

  19. ASTM Standard Practice C 1174, 1991

  20. A. Lousa, E. Martinez, J. Esteve, and E. Pascual, Effect of Ion Bombardment on the Properties of B4C Thin films Deposited by RF Sputtering, Thin Solid Films, 1999, 355–356, p 210–213

    Article  Google Scholar 

  21. J.F. Pierson, E. Tomasella, and P. Bauer, Reactively Sputtered Ti–B–N Nanocomposite Films: Correlation Between Structure and Optical Properties, Thin Solid Films, 2002, 408, p 26–32

    Article  Google Scholar 

  22. P.J. Kelly and R.D. Arnell, Magnetron Sputtering: A Review of Recent Developments and Applications, Vacuum, 2000, 56, p 159–172

    Article  Google Scholar 

  23. R.M. Santos, G. Mertens, M. Salman, O. Cizer, and T. Van Gerven, Comparative Study of Ageing, Heat Treatment and Accelerated Carbonation for Stabilization of Municipal Solid Waste Incineration Bottom Ash in View of Reducing Regulated Heavy Metal/Metalloid Leaching, J. Environ. Manag., 2013, 128, p 807–821

    Article  Google Scholar 

  24. F. Gorge and Vander Voort, Metallography and Microstructures, ASM Handbook, Russell Township, Geauga County, Ohio, 2004

    Google Scholar 

  25. Akash Singh, P. Kuppusami, R. Thirumurugesan, V. Ganesan and E. Mohandas, Development of Zirconium Thin Films by Pulsed Direct Current Magnetron Sputtering: Effect of Pulsed Parameters, Int. J. Des. Manuf. Technol. (ISSN-0973-9106), 2014, 8(1)

  26. ASTM Designation: Standard practice for micro etching metals and alloys, E407 – 07

  27. Todd R. Allen et al. International Symposium on Effects of Radiation on Materials, 22nd: 2004: Boston, Mass. ISBN 978-0-8031-3401-0.

  28. Ali Yousif, J. Adawiya Haidar, and Nadir F. Habubi, Study of the Structure Properties of Co-Doped ZnO Thin Films Grown by Pulsed Laser Deposition, J Nano Electr. Mater., 2012, 5, p 47–55

  29. B.L. Zhu, Xiao Hua Sun, Shi Shang Guo, Xing Zhong Zhao, Effect of Thickness on the Structure and Properties of ZnO Thin Films Prepared by Pulsed Laser Deposition, Jpn. J. Appl. Phys., 2006, 45(10A), p 7860–7865

  30. K.L. Chopra, Thin Film Phenomena, McGraw-Hill, New York, 1969

    Google Scholar 

  31. B.L. Zhun, S.J. Zhu, J. Wang, J. Wu, D.W. Zeng, and C.S. Xie, Thickness Effect on Structure and Properties of ZAO Thin Films by RF Magnetron Sputtering at Different Substrate Temperatures, Phys. E, 2011, 43, p 1738–1745

    Article  Google Scholar 

  32. Joost Vlassak, Thin Film Mechanics, Deas Harvard University, Ref:www.mrsec.harvard.edu/education/ap298r2004/Vlassak; 2004

  33. M. Gora, S. Kotowski, A. Nowotnik, M. Pytel, M. Drajewicz, and J. Sieniawski, PS-PVD Deposition of Thermal Barrier Coatings, Surf. Coatings Technol., 2013, 237, p 51–55

    Article  Google Scholar 

  34. Yu Chun, Y. Yang, J. Chen, X. Jijin, J. Chena, and L. Hao, Effect of Deposit Thickness During Electroplating on Kirkendall Voiding at Sn/Cu Joints, Mater. Lett., 2014, 128, p 9–11

    Article  Google Scholar 

  35. D. Bhaduri and A.K. Chattopadhyay, Study on the Role of PVD TiN Coating in Improving the Performance of Electroplated Monolayer Superabrasive Wheel, Surf. Coatings Technol., 2010, 205, p 658–667

    Article  Google Scholar 

  36. ASM handbook, Alloy Phase Diagrams, 1992

  37. S. Ningshen, M. Sakairi, K. Suzuki, and S. Ukai, The Passive Film Characterization and Anodic Polarization Behavior of 11% Cr Ferritic/Martensitic and 15% Cr Oxide Dispersion Strengthened Steels in Different Electrolytic Solutions, Appl. Surf. Sci., 2013, 274, p 345–355

    Article  Google Scholar 

  38. R. Natarajan, N. Palaniswamy, M. Natesan, and V.S. Muralidharan, XPS analysis of passive film on stainless steel, Open Corros. J., 2009, 2, p 114–124

    Article  Google Scholar 

  39. M. Zhang, X. Yu, D. Lu, and J. Yang, Facile Synthesis and Enhanced Visible Light Photocatalytic Activity of N and Zr Co-Doped TiO2 Nanostructures from Nanotubular Titanic Acid Precursors, Nanoscale Res. Lett., 2013, p 1–8.

  40. J.S. Spendelow, Q. Xu, J.D. Goodpaster, P.J.A. Kenis, and A. Wieckowski, The Role of Surface Defects in CO Oxidation, Methanol Oxidation and Oxygen Reduction on Pt, J. Electrochem. Soc., 2007, 154(12), p F238–F242

    Article  Google Scholar 

  41. G. Ruhi, O.P. Modi, and I.B. Singh, Corrosion Behaviour of Nano Structured Sol-Gel Alumina Coated 9Cr–1Mo Ferritic Steel in Chloride Bearing Environments, Surf. Coating Technol., 2009, 204, p 359–365

    Article  Google Scholar 

  42. N. Parvathavarthini, R.K. Dayal, and J.B. Gnanamoorthy, Effect of Microstructure on Corrosion Behavior of 9% Chromium-1% Molybdenum Steel, Corrosion, 1996, 52, p 540–551

    Article  Google Scholar 

  43. E. Ariza, L.A. Rocha, F. Vaz, L. Cunha, S.C. Ferreira, P. Carvalho, L. Rebouta, E. Alves, P. Goudeau, and J.P. Riviére, Corrosion Resistance of ZrNxOy Thin Films Obtained by RF Reactive Magnetron Sputtering, Thin Solid Films, 2004, 469–470, p 274–281

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Smt M.Jyothi, Foreman (A), MSSCD, IGCAR for support during experimental stages of the current studies. Further, we thank Dr. M. Vijayalakshmi, Associate Director, PMG, Dr. A. K. Bhaduri, Director, MMG and Dr. S.A.V. Satya Murty, Director, IGCAR for their continuous support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Murugesan, S., Parameswaran, P. et al. Characterization and Performance of Magnetron-Sputtered Zirconium Coatings Deposited on 9Cr-1Mo Steel. J. of Materi Eng and Perform 25, 4666–4679 (2016). https://doi.org/10.1007/s11665-016-2318-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2318-7

Keywords

Navigation