Skip to main content
Log in

On the Microstructural and Mechanical Characterization of Hybrid Laser-Welded Al-Zn-Mg-Cu Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Butt-welded 2-mm-thick high-strength aluminum alloys have been welded using a hybrid fiber laser and pulsed arc heat source system with the ER5356 filler. The microstructure, size of precipitates, texture, grain size and shape, change of strengthening elements, mechanical properties, and surface-based fatigue fracture characteristics of hybrid-welded joints were investigated in detail. The results indicate that the hybrid welds and the unaffected base materials have the lowest and largest hardness values, respectively, compared with the heat-affected zone. It is resonably believed that the elemental loss, coarse grains, and changed precipitates synthetically produce the low hardness and tensile strengths of hybrid welds. Meanwhile, the weaker grain boundary inside welds appears to initiate a microcrack. Besides, there exists an interaction of fatigue cracks and gas pores and microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Hu and I.M. Richardson, Microstructure and Mechanical Properties of AA7075(T6) Hybrid Laser/GMA Welds, Mater. Sci. Eng. A, 2007, 459(1–2), p 94–100

    Article  Google Scholar 

  2. A. Hirose, N. Kurosawa, K.F. Kobayashi, H. Todaka, and H. Yamaoka, Quantitative Evaluation of Softened Regions in Weld Heat-affected Zones of 6061-T6 Aluminum Alloy—Characterizing of the Laser Beam Welding Process, Metall. Mater. Trans. A, 1999, 30(8), p 2115–2120

    Article  Google Scholar 

  3. J.F. Tu and A.G. Paleocrassas, Fatigue Crack Fusion in Thin-Sheet Aluminum Alloys AA7075-T6 Using Low-Speed Fiber Laser Welding, J. Mater Process Technol., 2011, 211(1), p 95–102

    Article  Google Scholar 

  4. C. Bagger and F.O. Olsen, Review of Laser Hybrid Welding, J. Laser. Appl., 2011, 17(6), p 2–14

    Google Scholar 

  5. R.S. Huang, L. Kang, and X. Ma, Microstructure and Phase Composition of a Low-Power YAG Laser-MAG Welded Stainless Steel Joint, J. Mater. Eng. Perform., 2008, 17(6), p 928–935

    Article  Google Scholar 

  6. H. Staufer, Laser Hybrid Welding in the Automotive Industry, Weld. J., 2007, 86(10), p 36–40

    Google Scholar 

  7. H. Yonetani, Laser-MIG Hybrid Welding to Aluminium Alloy Carbody Shell for Railway Vehicles, Weld. Int., 2008, 22(10), p 701–704

    Article  Google Scholar 

  8. T.W. Nelson, R.J. Steel, and W.J. Arbegast, In Situ Thermal Studies and Post-weld Mechanical Properties of Friction Stir Welds in Age Hardenable Aluminum Alloys, Sci. Technol. Weld. Join., 2003, 8, p 283–288

    Article  Google Scholar 

  9. A. Deschamps, S. Ringeval, G. Texier, and D.L. Delfaut, Quantitative Characterization of the Microstructure of an Electron-beam Welded Medium Strength Al-Zn-Mg Alloy, Mater. Sci. Eng. A, 2009, 517(1–2), p 361–368

    Article  Google Scholar 

  10. L.M. Liu and X.D. Qi, Effects of Copper Addition on Microstructure and Strength of the Hybrid Laser-TIG Welded Joints Between Magnesium Alloy and Mild Steel, J. Mater. Sci., 2009, 44(21), p 5725–5731

    Article  Google Scholar 

  11. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton, Effect of Friction Stir Welding on Microstructure of 7075 Aluminum, Scripta Mater., 1997, 36(1), p 69–75

    Article  Google Scholar 

  12. T. Azimzadegan and S. Serajzadeh, An Investigation into Microstructures and Mechanical Properties of AA7075-T6 During Friction Stir Welding at Relatively High Rotational Speeds, J. Mater. Eng. Perform., 2010, 19(9), p 1256–1263

    Article  Google Scholar 

  13. L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M.K. Wedel, G. Waterloo, D. Schryvers, and L.R. Wallenberg LR, GP-zones in Al-Zn-Mg Alloys and Their Role in Artificial Aging, Acta Mater., 2001, 49(17), p 3443–3451

    Article  Google Scholar 

  14. A. Deschamps, Y. Brechet, and F. Livet, Influence of Copper Addition on Precipitation Kinetics and Hardening in Al-Zn-Mg Alloy, Mater. Sci. Technol., 1999, 15(9), p 993–1000

    Article  Google Scholar 

  15. S.C. Wu, X. Yu, R.Z. Zuo, W.H. Zhang, H.L. Xie, and J.Z. Jiang, Porosity, Element Loss and Strength Model on Softening Behavior of Hybrid Laser Arc Welded Al-Zn-Mg-Cu Alloy with Synchrotron Radiation Analysis, Weld. J., 2013, 92(3), p 64–71

    Google Scholar 

  16. G. Mathers, The Welding of Aluminium and Its Alloys, Woodhead Publishing Ltd., New York, 2002

    Book  Google Scholar 

  17. J. Wong, M. Froba, J.W. Elmer, P.A. Waide, and E.M. Larson, In-Situ Phase Mapping and Transformation Study in Fusion Welds, J. Mater. Sci., 1999, 32(6), p 1493–1500

    Article  Google Scholar 

  18. H. Zhang, H. Toda, H. Hara, M. Kobayashi, T. Kobayashi, D. Sugiyama, N. Kuroda, and K. Uesugi, Three-Dimensional Visualization of the Interaction Between Fatigue Crack and Micropores in an Aluminum Alloy using Synchrotron x-Ray Microtomography, Metall. Mater. Trans. A, 2007, 38(8), p 1774–1785

    Article  Google Scholar 

  19. P. Li, P.D. Lee, D.M. Maijer, and T.C. Lindley, Quantification of the Interaction Within Defect Populations on Fatigue Behavior in an Aluminum Alloy, Acta Mater., 2009, 57(12), p 3539–3548

    Article  Google Scholar 

  20. A.K. Shukla and W.A. Baeslack, Orientation Relationships and Morphology of S Phase in Friction Stir Welded Al-Cu-Mg Alloy, J. Mater. Sci., 2009, 44(2), p 676–679

    Article  Google Scholar 

  21. T. Ma and G.D. Ouden, Softening Behaviour of Al-Zn-Mg Alloys Due to Welding, Mater. Sci. Eng. A, 1999, 266(1–2), p 198–204

    Article  Google Scholar 

  22. L. Cui, X.Y. Li, D.Y. He, L. Chen, and S.L. Gong, Effect of Nd YAG Laser Welding on Microstructure and Hardness of an Al-Li Based Alloy, Mater. Charact., 2012, 71(9), p 95–102

    Article  Google Scholar 

  23. S. Dev, B.S. Murty, and K.P. Rao, Effects of Base and Filler Chemistry and Weld Techniques on Equiaxed Zone Formation in Al-Zn-Mg Alloy Welds, Sci. Technol. Weld. Join., 2008, 13(7), p 598–606

    Article  Google Scholar 

  24. J.R. Lg Hector, Y.L. Chen, S. Agarwal, and C.L. Briant, Texture Characterization of Autogenous Nd:YAG Laser Welds in AA5182-O and AA6111-T4 Aluminum Alloys, Metall Mater Trans A, 2004, 35(9), p 3032–3038

    Article  Google Scholar 

  25. Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda, Hall-Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys, Mater. Sci. Eng A, 2003, 354(1-2), p 298–305

    Article  Google Scholar 

  26. F.S. Jaberi and A.H. Kokabi, Influence of Nickel and Manganese on Microstructure and Mechanical Properties of Shielded Metal Arc-Welded API-X80 Steel, J. Mater. Eng. Perform., 2012, 21(7), p 1447–1454

    Article  Google Scholar 

  27. W. Hepples, M.C. Thornton, and N.J.H. Holroyd, Microstructural Characterization of White Zones in Weldable 7000 Series Alloys, J. Mater. Sci., 1992, 27(21), p 5720–5726

    Article  Google Scholar 

  28. G. Çam and M. Koçak, Microstructural and Mechanical Characterization of Electron Beam Welded Al-Alloy 7020, J. Mater. Sci., 2007, 42(17), p 7154–7161

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Fundamental Research Funds for the Central Universities (No.: 2682013CX030), the China Postdoctoral Science Foundation (No.: 2013M531980) and  the Open Research Fund Program of the State Key Lab. of Traction Power (No.: TPL1302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S.C., Hu, Y.N., Song, X.P. et al. On the Microstructural and Mechanical Characterization of Hybrid Laser-Welded Al-Zn-Mg-Cu Alloys. J. of Materi Eng and Perform 24, 1540–1550 (2015). https://doi.org/10.1007/s11665-015-1408-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1408-2

Keywords

Navigation