Skip to main content
Log in

Refractive Index Sensor Based on the Symmetric MIM Waveguide Structure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A surface plasmon polariton refractive index sensor which is composed of a metal–insulator–metal (MIM) waveguide, coupled with two stubs and one ring resonator, is proposed. The transmission characteristics of this plasmonic structure are numerically studied based on the finite element method. The simulation results display that a typical Fano profile is exhibited in the transmission spectra, and that the Fano resonance results from the coupling between broadband spectrum resonance (bright mode) in two stubs and the narrowband spectrum resonance (dark mode) in the ring resonator. Furthermore, the effect of various geometric parameters of this proposed structure and the refractive index sensitivity of the system based on Fano resonance is investigated. The investigations demonstrate that the spectral positions of the Fano resonances are highly sensitive to the radius of the ring resonator and the refractive index of the filling medium. The maximum sensitivity and the figure-of-merit of this structurer are 1268 nm/RIU and 280, respectively. These results provide a reference for achieving high-sensitivity sensors in MIM waveguide coupled systems based on the Fano resonance effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereux, and T.W. Ebbesen, Nature 424, 824 (2003).

    Article  Google Scholar 

  2. A.V. Zayats, I.I. Smolyaninov, and A.A. Maradudin, Phys. Rep. 408, 131 (2005).

    Article  Google Scholar 

  3. D.K. Gramotnev and S.I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).

    Article  Google Scholar 

  4. R. Zafar and M. Salim, IEEE J. Quantum Electron. 51, 7200306 (2015).

    Article  Google Scholar 

  5. O.S. Ahmed, M.A. Swillam, M.H. Bakr, and X. Li, Opt. Express 18, 21784 (2010).

    Article  Google Scholar 

  6. Z.D. Zhang, H.Y. Wang, and Z.Y. Zhang, Plasmonics 8, 797 (2012).

    Article  Google Scholar 

  7. Y.L. Jiang, J.C. Wang, and Y.K. Wang, Acta Photonica Sinica 43, 0923002 (2014).

    Article  Google Scholar 

  8. V.A. Fedotov, M. Rose, S.L. Prosvirnin, N. Papasimakis, and N.I. Zheludev, Phys. Rev. Lett. 99, 147401 (2007).

    Article  Google Scholar 

  9. A. Artar, A.A. Yanik, and H. Altug, Nano Lett. 11, 1685 (2011).

    Article  Google Scholar 

  10. A. Artar, A.A. Yanik, and H. Altug, Nano Lett. 11, 3694 (2011).

    Article  Google Scholar 

  11. D. Wang, X. Yu, and Q. Yu, Appl. Phys. Lett. 103, 824 (2013).

    Google Scholar 

  12. J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, and J. Xu, Opt. Express 22, 14688 (2014).

    Article  Google Scholar 

  13. X. Yan, T. Wang, X. Han, S. Xiao, Y. Zhu, and Y. Wang, Plasmonics 12, 1449 (2017).

    Article  Google Scholar 

  14. X. Piao, S. Yu, and N. Park, Opt. Express 20, 18994 (2012).

    Article  Google Scholar 

  15. X. Piao, S. Yu, S. Koo, K. Lee, and N. Park, Opt. Express 19, 10907 (2011).

    Article  Google Scholar 

  16. S. Yu, X. Piao, J. Hong, and N. Park, Phys. Rev. A 92, 011802 (2015).

    Article  Google Scholar 

  17. X. Zhao, Z. Zhang, and S. Yan, Sensors 17, 1494 (2017).

    Article  Google Scholar 

  18. S. Yan, M. Zhang, X. Zhao, Y. Zhang, J. Wang, and W. Jin, Sensors 17, 2879 (2017).

    Article  Google Scholar 

  19. Z. Zhang, L. Luo, C. Xue, W. Zhang, and S. Yan, Sensors 16, 642 (2016).

    Article  Google Scholar 

  20. Q. Liu, L. Bibbó, S. Albin, Q. Wang, M. Lin, H.H. Lu, and Z.B. Ouyang, Sci. Rep. 8, 88 (2018).

    Article  Google Scholar 

  21. R.D. Kekatpure, A.C. Hryciw, E.S. Barnard, and M.L. Brongersma, Opt. Express 17, 4112 (2009).

    Article  Google Scholar 

  22. H. Gai, J. Wang, and Q. Tian, Appl. Opt. 46, 2229 (2007).

    Article  Google Scholar 

  23. R.D. Kekatpure, A.C. Hryciw, E.S. Barnard, and M.L. Brongersma, Opt. Express 17, 24112 (2009).

    Article  Google Scholar 

  24. F. Hu, H. Yi, and Z. Zhou, Opt. Lett. 36, 1500 (2011).

    Article  Google Scholar 

  25. J.H. Zhu, Q.J. Wang, P. Shum, and X.G. Huang, IEEE Trans. Nanotechnol. 10, 1371 (2011).

    Article  Google Scholar 

  26. H. Haus and W.P. Huang, Proc. IEEE 79, 1505 (2002).

    Article  Google Scholar 

  27. K. Lee, N. Park, S. Koo, S. Yu, and X. Piao, Opt. Express 19, 10907 (2011).

    Article  Google Scholar 

  28. Z.D. Zhang, R.B. Wang, Z.Y. Zhang, J. Tang, W.D. Zhang, and C.Y. Xue, Plasmonics 12, 1007 (2017).

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Research Fund of North University of China (ZBQNJJ2017007).

Author information

Authors and Affiliations

Authors

Contributions

Yifei Zhang analyzed the data and wrote the paper; Min Cui conceived and designed the simulations; Yifei Zhang performed the simulations.

Corresponding author

Correspondence to Yifei Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cui, M. Refractive Index Sensor Based on the Symmetric MIM Waveguide Structure. J. Electron. Mater. 48, 1005–1010 (2019). https://doi.org/10.1007/s11664-018-6823-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6823-3

Keywords

Navigation