Skip to main content

Advertisement

Log in

Solar Thermal Cogeneration System Using a Cylindrical Thermoelectric Module

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We propose a solar thermal cogeneration system using a cylindrical thermoelectric module for efficient solar energy convergence. Numerical simulations are presented to evaluate the system efficiency compared with a conventional pillar-type thermoelectric cogeneration system. We consider the effects of thermal radiation, contact resistances, and heat flux in the connecting wire, which significantly affect the system efficiency. Compared with the pillar-type device, the cylindrical device can achieve a higher heat flux and lower thermal radiation loss from the sides. In particular, the thermal radiation loss from the sides becomes negligible in a scaled-up cylindrical device. When the areas of the light-absorbing layer are the same in both devices, the power efficiencies, which are defined as power extracted from the module over input heat to the module, are comparable, but the system efficiency, which is defined as extracted heat from the module over input heat to the module, of the cylindrical device is higher than that of the pillar-type device. In the case of the unileg cylindrical device, where the hot side is connected to the cold side by the Cu wire, the system efficiency increased but the power efficiency decreased owing to the heat flux through the Cu wire. On the other hand, the p-n couple cylindrical device can overcome the trade-off and achieve system efficiency as high as 91.6%, including 8.1% power efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Sundarraj, D. Maity, S.S. Roy, and R.A. Taylor, RSC Adv. 4, 46860 (2014).

    Article  Google Scholar 

  2. N. Wang, L. Han, H. He, N.H. Park, and K. Koumoto, Energy Environ. Sci. 4, 3676 (2011).

    Article  Google Scholar 

  3. H. He, C. Zhang, T. Liu, Y. Cao, N. Wang, and Z. Guo, J. Mater. Chem. A 4, 9362 (2016).

    Article  Google Scholar 

  4. E.A. Chavez Urbiola and Y. Vorobiev, Int. J. Photoenergy 2013, 704087 (2013).

  5. M. Hasan Nia, A. Abbas Nejad, A.M. Goudarzi, M. Balizadeh, and P. Samadian, Energy Convers. Manag. 84, 305 (2014).

    Article  Google Scholar 

  6. P. Sundarraj, R.A. Taylor, D. Banejee, D. Maity, and S.S. Roy, J. Phys. D Appl. Phys. 50, 015501 (2017).

    Article  Google Scholar 

  7. Z. Ouyang and D. Li, Sci. Rep. 6, 24123 (2016).

    Article  Google Scholar 

  8. D. Kraemer, B. Poudel, H.P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, Nat. Mater. 10, 532 (2011).

    Article  Google Scholar 

  9. N. Wang, H. Chen, H. He, W. Norimatsu, M. Kusunoki, and K. Koumoto, Sci. Rep. 3, 3449 (2013).

    Article  Google Scholar 

  10. C.M. Hanton, Thermoelectric Voltage Generator, U.S. Patent 4,095,998, 20 June 1978.

  11. A.Z. Hed, Cylindrical Thermoelectric Cells, U.S. Patent 52,285,923, 20 July 1993.

  12. S. Nishimoto, T. Kitayama, and Y. Fujisawa, Tubular Thermoelectric Module, U.S. Patent 6,096,966, 1 Aug 2000.

  13. R.O. Suzuki and D. Tanaka, J. Power Sources 122, 201 (2003).

    Article  Google Scholar 

  14. R.O. Suzuki and D. Tanaka, J. Power Sources 124, 293 (2003).

    Article  Google Scholar 

  15. T. Kyono, R.O. Suzuki, and K. Ono, IEEE Trans. Energy Convers. 18, 330 (2003).

    Article  Google Scholar 

  16. R.O. Suzuki and D. Tanaka, J. Power Sources 132, 266 (2004).

    Article  Google Scholar 

  17. G. Min and D.M. Rowe, Semicond. Sci. Technol. 22, 880 (2007).

    Article  Google Scholar 

  18. A. Schmitz, C. Stiewe, and E. Muller, J. Electron. Mater. 42, 1702 (2013).

    Article  Google Scholar 

  19. M. Matsubara and R. Asahi, J. Electron. Mater. 45, 1669 (2016).

    Article  Google Scholar 

  20. S. Laube, D. Tatarinov, M. Morschel, and G. Bastian, in AIP Conference Proceedings, (2012), pp. 431–434.

  21. C.A. Domenicali, J. Appl. Phys. 25, 1310 (1954).

    Article  Google Scholar 

  22. A. Suzumura, Thermoelectric Conversion Element, Japan Patent 5,780,254, 24 July 2015.

  23. P. Ziolkowski, P. Poinas, J. Leszczynski, G. Karpinski, and E. Muller, J. Electron. Mater. 39, 1934 (2010).

    Article  Google Scholar 

  24. D. Kraemer, K. McEnaney, M. Chiesa, and G. Chen, Sol. Energy 86, 1338 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitoshi Suzumura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzumura, A., Hazama, H., Matsubara, M. et al. Solar Thermal Cogeneration System Using a Cylindrical Thermoelectric Module. J. Electron. Mater. 48, 467–474 (2019). https://doi.org/10.1007/s11664-018-6725-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6725-4

Keywords

Navigation