Skip to main content

Advertisement

Log in

Temperature-Stable Dielectric Properties from − 56°C to 248°C in (1 − x)BaTiO3-xBi(Mg0.5Sn0.5)O3 System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(1 − x)BaTiO3-xBi(Mg0.5Sn0.5)O3 [BTBMS, 0.02 ≤ x ≤ 0.12, x represents the amount of Bi(Mg0.5Sn0.5)O3 (mol.%)] ceramics that were prepared by a traditional solid state reaction technique. X-ray diffraction results demonstrated that BTBMS belongs to a homogenous solid solution. The composition with x = 0.1 has the best properties with a stable relative permittivity (εr ~ 2918), the thermal-stability of relative permittivity (Δε/ε25°C ≤ ± 15%) in a large range of temperature from − 56 to 248°C and low dielectric loss (tanδ ≤ 0.025) from − 54 to 125°C. The relaxation in the high temperature region is thermally activated, and the oxygen vacancies may be the ionic charge carriers. Moreover, energy storage efficiency reaches the maximum at x = 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.M. Hung, C.S. Hsieh, W.D. Yang, and H.J. Tsai, J. Electron. Mater. 36, 245 (2007).

    Article  Google Scholar 

  2. B. Tang, S.R. Zhang, X.H. Zhou, D. Wang, and Y. Yuan, J. Electron. Mater. 36, 1383 (2014).

    Article  Google Scholar 

  3. X.L. Chen, J. Chen, D.D. Ma, L. Fang, and H.F. Zhou, J. Am. Ceram. Soc. 98, 804 (2015).

    Article  Google Scholar 

  4. J. Chen, X.L. Chen, F. He, Y.L. Wang, H.F. Zhou, and L. Fang, J. Electron. Mater. 43, 1112 (2014).

    Article  Google Scholar 

  5. X.L. Chen, J. Chen, D.D. Ma, L. Fang, and H.F. Zhou, Ceram. Int. 141, 2081 (2015).

    Article  Google Scholar 

  6. A. Zeb and S.J. Milne, J. Eur. Ceram. Soc. 34, 3159 (2014).

    Article  Google Scholar 

  7. N. Baskaran and H. Chang, J. Mater. Sci. Mater. Electron. 12, 527 (2001).

    Article  Google Scholar 

  8. Y. Xie, S. Yin, T. Hashimoto, H. Kimura, and T. Sato, J. Mater. Sci. 44, 4834 (2009).

    Article  Google Scholar 

  9. S. Markovic, M. Mitric, N. Cvjeticanin, and D. Uskokovic, J. Eur. Ceram. Soc. 27, 505 (2007).

    Article  Google Scholar 

  10. D.D. Ma, X.L. Chen, G.S. Huang, J. Chen, H.F. Zhou, and F. Fang, Ceram. Int. 41, 7157 (2015).

    Article  Google Scholar 

  11. X.L. Chen, G.S. Huang, D.D. Ma, G.F. Liu, and H.F. Zhou, Ceram. Int. 43, 926 (2017).

    Article  Google Scholar 

  12. U.D. Venkateswaran, V.M. Naik, and R. Naik, Phys. Rev. B 58, 14256 (1998).

    Article  Google Scholar 

  13. J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, and A. Simon, Phys. Rev. B 69, 092104 (2004).

    Article  Google Scholar 

  14. D.Y. Lu, X.Y. Sun, and M. Toda, J. Phys. Chem. Solids 68, 650 (2007).

    Article  Google Scholar 

  15. E. Atamanik and V. Thangadurai, Mater. Res. Bull. 44, 931 (2009).

    Article  Google Scholar 

  16. J. Plocharski and W. Wieczoreck, Solid. State Ionics 28, 979 (1988).

    Article  Google Scholar 

  17. A.K. Jonscher, Nature 6, 19 (1977).

    Google Scholar 

  18. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994).

    Article  Google Scholar 

  19. X. Yao, Z.L. Chen, and L.E. Cross, J. Appl. Phys. 54, 3399 (1984).

    Google Scholar 

  20. A.K. Jonscher, J. Phys. D Appl. Phys. 32, R50 (1999).

    Article  Google Scholar 

  21. C. Ang, Z. Yu, and L.E. Cross, Phys. Rew. B. 62, 228 (2000).

    Article  Google Scholar 

  22. J. Wang, S.L. Jiang, D. Jiang, T.W. Wang, and H. Yao, Ceram. Int. 39, 3657 (2013).

    Article  Google Scholar 

  23. H. Borkara, V.N. Singha, B.P. Singha, M. Tomarb, V. Guptac, and A. Kumar, RSC Adv. 4, 22840 (2015).

    Article  Google Scholar 

  24. Q. Zhang, Y. Zang, X.R. Wang, T. Ma, and Z.B. Yuan, Ceram. Int. 38, 4765 (2012).

    Article  Google Scholar 

  25. T. Wang, X.Y. Wei, Q.Y. Hu, L. Jin, Z. Xu, and Y.J. Feng, Mater. Sci. Eng. B 178, 1081 (2013).

    Article  Google Scholar 

  26. W. Cao, W. Li, T. Zhang, J. Sheng, Y. Hou, Y. Feng, Y. Yu, and W. Fei, Energy Technol. 3, 1198 (2016).

    Article  Google Scholar 

  27. D. Luo, R. Ma, Y.A. Wu, X.C. Zhang, Y. Liu, L. Wang, and W.B. Fu, J. Am. Ceram. Soc. 23, 3080 (2017).

    Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Foundation of China (Nos. 11664008, 11464009 and 61761015), Natural Science Foundation of Guangxi (Nos. 2017GXNSFDA198027 and 2017GXNSFFA 198011) and the Research Start-up Funds Doctor of Guilin University of Technology (No. GUTQD JJ2017133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, X., Liu, X. et al. Temperature-Stable Dielectric Properties from − 56°C to 248°C in (1 − x)BaTiO3-xBi(Mg0.5Sn0.5)O3 System. J. Electron. Mater. 48, 296–303 (2019). https://doi.org/10.1007/s11664-018-6714-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6714-7

Keywords

Navigation