Skip to main content
Log in

Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol–gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV–Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29–3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and \(n_{{\infty }}^{2}\) were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Sagar, P.K. Shishodia, R.M. Mehra, H. Okada, A. Wakahara, and A. Yoshida, J. Lumin. 126, 800 (2007).

    Article  Google Scholar 

  2. F. Benharrats, K. Zitouni, A. Kadri, and B. Gil, Superlattices Microstruct. 47, 592 (2010).

    Article  Google Scholar 

  3. K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, and S. Niki, Appl. Phys. Lett. 79, 4139 (2001).

    Article  Google Scholar 

  4. B. Kulyk, B. Sahraoui, V. Figà, B. Turko, V. Rudyk, and V. Kapustianyk, J. Alloys Compd. 481, 819 (2009).

    Article  Google Scholar 

  5. G.M. Ali, S. Singh, and P. Chakrabarti, J. Electron. Sci. Technol. 8, 55 (2010).

    Google Scholar 

  6. Y.-H. Lin, P.-C. Yang, J.-S. Huang, G.-D. Huang, I.-J. Wang, W. Wen-Hao, M.-Y. Lin, S. Wei-Fang, and C.-F. Lin, Sol. Energy Mater. Sol. Cells 95, 2511 (2011).

    Article  Google Scholar 

  7. L.J. Mandalapu, F.X. Xiu, Z. Yang, D.T. Zhao, and J.L. Liu, Appl. Phys. Lett. 12, 92 (2008).

    Google Scholar 

  8. S.S. Badadhe and I.S. Mulla, Sens. Actuators B Chem. 156, 943 (2011).

    Article  Google Scholar 

  9. K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, and H. Sirringhaus, Nat. Mater. 10, 45 (2011).

    Article  Google Scholar 

  10. L. Gao, Q. Li, W. Luan, H. Kawaoka, T. Sekino, and K. Niihara, J. Am. Ceram. Soc. 85, 1016 (2002).

    Article  Google Scholar 

  11. P. Prepelita, R. Medianu, B. Sbarcea, R. Petronela Prepelita, F. Garoi, and M. Filipescu, Appl. Surf. Sci. 256, 1807 (2010).

    Article  Google Scholar 

  12. F.J. Haug, Z. Geller, H. Zogg, A.N. Tiwari, and C. Vignali, J. Vaccum Sci. Technol. A 19, 171 (2001).

    Article  Google Scholar 

  13. X. Peng, X. Jinzhang, H. Zang, B. Wang, and Z. Wang, J. Lumin. 128, 297 (2008).

    Article  Google Scholar 

  14. J. Ding, H. Chen, X. Zhao, and S. Ma, J. Phys. Chem. Solids 71, 346 (2010).

    Article  Google Scholar 

  15. Y.W. Heo, S.J. Park, K. Ip, S.J. Pearton, and D.P. Norton, Appl. Phys. Lett. 83, 1128 (2003).

    Article  Google Scholar 

  16. C. Xu, M. Kim, J. Chun, and D. Kim, Appl. Phys. Lett. 86, 133107 (2005).

    Article  Google Scholar 

  17. J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, and W.K. Choo, J. Appl. Phys. 92, 6066 (2002).

    Article  Google Scholar 

  18. S. Eustis, D.C. Meier, M.R. Beversluis, and B. Nikoobakht, ACS Nano 2, 368 (2008).

    Article  Google Scholar 

  19. D. Paul Joseph and C. Venkateswaran, J. Atom. Mol. Optic. Phys. 2011, 270540 (2011).

  20. M. Öztas and M. Bedir, Thin Solid Films 516, 1703 (2008).

    Article  Google Scholar 

  21. Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, C.H. Alfred Huan, T.C. Sum, and T. Wu, J. Phys. Chem. C 112, 9579 (2008).

    Article  Google Scholar 

  22. S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, and S.J. Chua, J. Appl. Phys. 98, 013505 (2005).

    Article  Google Scholar 

  23. C.O. Kim, S. Kim, H.T. Oh, S.-H. Choi, Y. Shon, S. Lee, H.N. Hwang, and C.-C. Hwang, Phys. B Condens. Matter. 405, 4678 (2010).

    Article  Google Scholar 

  24. J.B. Kim, D. Byun, S.Y. Ie, D.H. Park, W.K. Choi, J.-K. Choi, and B. Angadi, Semicond. Sci. Technol. 23, 095004 (2008).

    Article  Google Scholar 

  25. G. Shukla, Appl. Phys. A 97, 115 (2009).

    Article  Google Scholar 

  26. E.M. El Jald, V.A. Franiv, A. Belayachi, and M. Abd-Lefdil, Optik 124, 6302 (2013).

    Article  Google Scholar 

  27. T.S. Herng, S.P. Lau, S.F. Yu, H.Y. Yang, X.H. Ji, J.S. Chen, N. Yasui, and H. Inaba, J. Appl. Phys. 99, 086101 (2006).

    Article  Google Scholar 

  28. S.-Y. Zhuo, X.-C. Liu, Z. Xiong, J.-H. Yang, and E.-W. Shi, Solid State Commun. 152, 257 (2012).

    Article  Google Scholar 

  29. T. Saidani, M. Zaabat, M.S. Aida, A. Benaboud, S. Benzitouni, and A. Boudine, Superlattices Microstruct. 75, 47 (2014).

    Article  Google Scholar 

  30. D. Wang and S. Gao, J. Alloys Compd. 476, 925 (2009).

    Article  Google Scholar 

  31. I.S. Yahia, G.F. Salem, M.S. Abd El-sadek, and F. Yakuphanoglu, Superlattices Microstruct. 64, 178 (2013).

    Article  Google Scholar 

  32. C. Aydın, H.M. El-Nasser, F. Yakuphanoglu, I.S. Yahia, and M. Aksoy, J. Alloys Compd. 509, 854–858 (2011).

    Article  Google Scholar 

  33. D.R. Sahu, Mater. Sci. Eng., B 171, 99 (2010).

    Article  Google Scholar 

  34. R.-C. Wang and H.-Y. Lin, Appl. Phys. A 95, 813 (2009).

    Article  Google Scholar 

  35. R. Elilarassi, P.S. Rao, and G. Chandrasekaran, J. Sol Gel. Sci. Technol. 57, 101 (2011).

    Article  Google Scholar 

  36. U. Choppali and B.P. Gorman, J. Lumin. 128, 1641 (2008).

    Article  Google Scholar 

  37. S. Monticone, R. Tufeu, and A.V. Kanaev, J. Phys. Chem. B. 102, 2854 (1998).

    Article  Google Scholar 

  38. S. Baek, J. Song, and S. Lim, Phys. B 399, 101 (2007).

    Article  Google Scholar 

  39. E.F. Keskenler, G. Turgut, and S. Doğan, Superlattices Microstruct. 52, 107 (2012).

    Article  Google Scholar 

  40. H. Chen, W. Guo, J. Ding, and S. Ma, Superlattices Microstruct. 51, 544 (2012).

    Article  Google Scholar 

  41. R.N. Gayen, A. Rajaram, R. Bhar, and A.K. Pal, Thin Solid Films 518, 1627 (2010).

    Article  Google Scholar 

  42. A. Jakhar, A. Jamdagni, A. Bakshi, T. Verma, V. Shukla, P. Jain, N. Sinha, and P. Arun, Solid State Commun. 168, 31 (2013).

    Article  Google Scholar 

  43. J.I. Pankove, Optical Processes in Semiconductors (Englewoord Cliffs: Prentice-Hall Inc, 1971).

    Google Scholar 

  44. T. Ghosh, M. Dutta, S. Mridha, and D. Basak, J. Electrochem. Soc. 156, H285 (2009).

    Article  Google Scholar 

  45. A.P. Roth, J.B. Webb, and D.F. Williams, Solid State Commun. 39, 1269 (1981).

    Article  Google Scholar 

  46. K.A. Jeon, J.H. Kim, W.Y. Shim, W.Y. Lee, M.H. Jung, and S.Y. Lee, J. Cryst. Growth 287, 66 (2006).

    Article  Google Scholar 

  47. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  Google Scholar 

  48. Y. Chen, X.L. Xu, G.H. Zhang, H. Xue, and S.Y. Ma, Phys. B 404, 3645 (2009).

    Article  Google Scholar 

  49. A. Sayed, S. Taha, G. Said, A.A. Al-Ghamdi, and F. Yakuphanoglu, Superlattices Microstruct. 60, 108 (2013).

    Article  Google Scholar 

  50. A.-S. Gadallah and M.M. El-Nahass, Adv. Condens. Matter Phys. 2013, 11 (2013).

    Article  Google Scholar 

  51. M. DrDomenico Jr. and S.H. Wemple, J. Appl. Phys. 40, 720 (1969).

    Article  Google Scholar 

  52. H. Benzarouk, A. Drici, M. Mekhnache, A. Amara, M. Guerioune, J.C. Bernède, and H. Bendjffal, Superlattices Microstruct. 52, 594 (2012).

    Article  Google Scholar 

  53. M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, and M. Hrdlička, J. Non-Cryst. Solids 326, 399 (2003).

    Article  Google Scholar 

  54. H. Ticha and L. Tichy, J. Optoelectron. Adv. Mater. 4, 381 (2002).

    Google Scholar 

  55. C.C. Wang, Phys Rev B 2, 2045 (1970).

    Article  Google Scholar 

  56. J.J. Wynne, Phys. Rev. Lett. 29, 650 (1972).

    Article  Google Scholar 

  57. H. Nasu and J.D. Mackenzie, Opt. Eng. 26, 262102 (1987).

    Article  Google Scholar 

  58. R. Adair, L.L. Chase, and S.A. Payne, Phys. Rev. B 39, 3337 (1989).

    Article  Google Scholar 

  59. D. Hanna, J. Mod. Opt. 35, 12 (1988).

    Article  Google Scholar 

  60. E.R. Shaaban, M. El-Hagary, H.S. Hassan, Y.A. Ismail, M. Emam-Ismail, and A.S. Ali, Appl. Phys. A 122, 1 (2016).

    Article  Google Scholar 

  61. M. Ajili, M. Castagne, and N.K. Turki, Superlattices Microstruct. 53, 213 (2013).

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to express their gratitude to King Khalid University, Saudi Arabia for providing administrative and technical support with Grant No. R.G.P.2/3/38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Yahia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, V., Salem, G.F., Yahia, I.S. et al. Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics. J. Electron. Mater. 47, 1798–1805 (2018). https://doi.org/10.1007/s11664-017-5950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5950-6

Keywords

Navigation