Skip to main content
Log in

Thermal Stability of the Dynamic Magnetic Properties of FeSiAl-Al2O3 and FeSiAl-SiO2 Films Grown by Gradient-Composition Sputtering Technique

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We carry out a systematic investigation of the dynamic magnetic properties of FeSiAl-Al2O3 and FeSiAl-SiO2 thin films prepared by gradient-composition deposition technique with respect to temperature in the range of 300 K to 420 K. It was found that the magnetic anisotropy field (H K) and ferromagnetic resonance frequency (f FMR) are increased with increasing deposition angle (β) due to the enhancement of stress (σ) when concentrations of Al and O or Si and O are increased. The thermal stability of FeSiAl-Al2O3 films show a very interesting behavior with the magnetic anisotropy increasing with temperature when the deposition angle is increased. In contrast, when the deposition angle is lower, the usual trend of decreasing magnetic anisotropy with increasing temperature is observed. Moreover, the temperature-dependent behaviors of the dynamic permeability and effective Gilbert damping coefficient (α eff) for FeSiAl-Al2O3 and FeSiAl-SiO2 films at different deposition angles are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Zhang, H. Zheng, W. Zhu, M. Li, M. Zhang, N. Wang, H.P. Lu, J.L. Xie, and L.J. Deng, J. Alloys Compd. 657, 174 (2016).

    Article  Google Scholar 

  2. Y. Wang, L. Wang, H. Zhang, Z. Zhong, D. Peng, F. Ye, and F. Bai, J. Alloys Compd. 667, 229 (2016).

    Article  Google Scholar 

  3. N.N. Phuoc and C.K. Ong, J. Appl. Phys. 117, 213905 (2015).

    Article  Google Scholar 

  4. X. Zhong, W.T. Soh, N.N. Phuoc, Y. Liu, and C.K. Ong, J. Appl. Phys. 117, 013906 (2015).

    Article  Google Scholar 

  5. X. Zhong, N.N. Phuoc, Y. Liu, and C.K. Ong, J. Magn. Magn. Mater. 365, 365 (2014).

    Article  Google Scholar 

  6. G. Chai, N.N. Phuoc, and C.K. Ong, Appl. Phys. Lett. 103, 042412 (2013).

    Article  Google Scholar 

  7. D.H. Manh, D.K. Tung, L.T.H. Phong, N.X. Phuc, P.T. Phong, J. Jutimoosik, and R. Yimirun, J. Electron. Mater. 45, 2501 (2016).

    Article  Google Scholar 

  8. N.N. Phuoc and C.K. Ong, J. Electron. Mater. 45, 4061 (2016).

    Article  Google Scholar 

  9. H. Sharma, S. Jain, P.M. Raj, K.P. Murali, and R. Tummala, J. Electron. Mater. 44, 3819 (2015).

    Article  Google Scholar 

  10. A. Ruiz-Calaforra, T. Brächer, V. Lauer, P. Pirro, B. Heinz, M. Geilen, A.V. Chumak, A. Conca, B. Leven, and B. Hillebrands, J. Appl. Phys. 117, 163901 (2015).

  11. W.T. Soh, B. Peng, and C.K. Ong, Aip Adv. 5, 107602 (2015).

    Article  Google Scholar 

  12. K. Sun, Y. Yang, Y. Liu, Z. Yu, Y. Zeng, W. Tong, X. Jiang, Z. Lan, R. Guo, and C. Wu, IEEE Trans. Magn. 51, 2006304 (2015).

    Google Scholar 

  13. V. Tshitoyan, C. Ciccarelli, A.P. Mihai, M. Ali, A.C. Irvine, T.A. Moore, T. Jungwirth, and A.J. Ferguson, Phys. Rev. B 92, 214406 (2015).

    Article  Google Scholar 

  14. W.T. Soh, Y. Yeow, X. Zhong, and C.K. Ong, J. Phys. D Appl. Phys. 48, 345002 (2015).

    Article  Google Scholar 

  15. W.T. Soh, N.N. Phuoc, C.Y. Tan, and C.K. Ong, J. Appl. Phys. 114, 053908 (2013).

    Article  Google Scholar 

  16. F. Zheng, F. Luo, Y. Lou, Y. Wang, J. Bai, D. Wei, X. Liu, and F. Wei, J. Appl. Phys. 111, 07E723 (2012).

    Google Scholar 

  17. X. Zhong, Y. Liu, J. Li, and Y. Wang, J. Magn. Magn. Mater. 324, 2631 (2012).

    Article  Google Scholar 

  18. X. Zhong, N.N. Phuoc, G. Chai, Y. Liu, and C.K. Ong, J. Alloys Compd. 610, 126 (2014).

    Article  Google Scholar 

  19. S.J. Lee, J.E. Snyder, C.C.H. Lo, K.M. Campos-Anderson, J.W. Anderegg, and D.C. Jiles, J. Appl. Phys. 94, 2607 (2003).

    Article  Google Scholar 

  20. N.N. Phuoc, L.T. Hung, and C.K. Ong, J. Alloys Compd. 509, 4010 (2011).

    Article  Google Scholar 

  21. I. Barsukov, P. Landeros, R. Meckenstock, J. Lindner, D. Spoddig, Zi-An Li, B. Krumme, H. Wende, D.L. Mills, and M. Farle, Phys. Rev. B 85, 014420 (2012).

  22. N.N. Phuoc, W.T. Soh, G. Chai, and C.K. Ong, J. Appl. Phys. 113, 073902 (2013).

    Article  Google Scholar 

  23. H. Geng, J.Q. Wei, S.J. Nie, Y. Wang, Z.W. Wang, L.S. Wang, Y. Chen, D.L. Peng, F.S. Li, and D.S. Xue, Mater. Lett. 92, 346 (2013).

    Article  Google Scholar 

  24. D. Spenato, S.P. Pogssian, D.T. Dekadjevi, and J. Ben Youssef, J. Phys. D Appl. Phys. 40, 3306 (2007).

    Article  Google Scholar 

  25. N.N. Phuoc and C.K. Ong, J. Appl. Phys. 111, 093919 (2012).

    Article  Google Scholar 

  26. N.N. Phuoc and C.K. Ong, Adv. Mater. 25, 980 (2013).

    Article  Google Scholar 

  27. N.N. Phuoc and C.K. Ong, Appl. Phys. Lett. 102, 212406 (2013).

    Article  Google Scholar 

  28. Y. Liu, L.F. Chen, C.Y. Tan, H.J. Liu, and C.K. Ong, Rev. Sci. Instrum. 76, 063911 (2005).

    Article  Google Scholar 

  29. L.T. Hung, N.N. Phuoc, X.C. Wang, and C.K. Ong, Rev. Sci. Instrum. 82, 084701 (2011).

    Article  Google Scholar 

  30. S. Li, Z. Huang, J.-G. Duh, and M. Yamaguchi, Appl. Phys. Lett. 92, 092501 (2008).

    Article  Google Scholar 

  31. F. Zheng, X. Wang, X. Li, J. Bai, D. Wei, X. Liu, W. Xie, and F. Wei, J. Appl. Phys. 109, 07B509 (2011).

    Google Scholar 

  32. S. Li, H. Du, Q. Xue, S. Xie, M. Liu, W. Shao, J. Xu, T. Nan, N.X. Sun, and J.-G. Duh, J. Appl. Phys. 113, 17A332 (2013).

    Google Scholar 

  33. R.L. Rodríguez-Suárez, L.H. Vilela-Leão, T. Bueno, A.B. Oliveira, J.R.L. de Almeida, P. Landeros, S.M. Rezende, and A. Azevedo, Phys. Rev. B 83, 224418 (2011).

    Article  Google Scholar 

  34. N.N. Phuoc, G. Chai, and C.K. Ong, J. Appl. Phys. 112, 083925 (2012).

    Article  Google Scholar 

  35. M. Ledieu, F. Schoenstein, J.H. Le Gallou, O. Valls, S. Queste, F. Duverger, and O. Acher, J. Appl. Phys. 93, 7202 (2003).

    Article  Google Scholar 

  36. B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials, 2nd ed. (Hoboken: Wiley, 2009).

    Google Scholar 

  37. N.D. Rizzo, B.N. Engel, J.A. Janesky, J.M. Slaughter, and J.Sun, U.S. Patent 6,818,961 B1 (2004).

  38. J.B. Staunton, L. Szunyogh, A. Buruzs, B.L. Gyorffy, S. Ostanin, and L. Udvardi, Phys. Rev. B 74, 144411 (2006).

    Article  Google Scholar 

  39. N.N. Phuoc, G. Chai, and C.K. Ong, J. Appl. Phys. 112, 113908 (2012).

    Article  Google Scholar 

  40. N.N. Phuoc and C.K. Ong, I.E.E.E. Trans. Magn. 50, 7 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxi Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Phuoc, N.N., Soh, W.T. et al. Thermal Stability of the Dynamic Magnetic Properties of FeSiAl-Al2O3 and FeSiAl-SiO2 Films Grown by Gradient-Composition Sputtering Technique. J. Electron. Mater. 46, 208–217 (2017). https://doi.org/10.1007/s11664-016-4882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4882-x

Keywords

Navigation