Skip to main content
Log in

Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates. II: Fracture Mechanism Map

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A methodology to construct fracture mechanism maps for Sn-3.8%Ag-0.7%Cu (SAC387) solder joints attached to Cu substrates has been developed. The map, which delineates the operative mechanisms of fracture along with corresponding joint fracture toughness values, is plotted in a space described by two microstructure-dependent parameters, with the abscissa describing the interfacial intermetallic compound (IMC) and the ordinate representing the strain-rate-dependent solder yield strength. The plot space encompasses the three major mechanisms by which joints fail, namely (i) cohesive fracture of solder, (ii) cleavage fracture of interfacial intermetallic compounds (IMC), and (iii) fracture of the solder–IMC interface. Line contours of constant fracture toughness values, as well as constant fraction of each of the above mechanisms, are indicated on the plots. The plots are generated by experimentally quantifying the dependence of the operative fracture mechanism(s) on the two microstructure-dependent parameters (IMC geometry and solder yield strength) as functions of strain rate, reflow parameters, and post-reflow aging. Separate maps are presented for nominally mode I and equi-mixed mode loading conditions (loading angle ϕ = 0° and 45°, respectively). The maps allow rapid assessment of the operative fracture mechanism(s) along with estimation of the expected joint fracture toughness value for a given loading condition (strain rate and loading angle) and joint microstructure without conducting actual tests, and may serve as a tool for both prediction and microstructure design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar, A. Prasad, B.W. Grimsley, and H.B. Tejada, Mater. Sci. Eng. A 460–461, 595 (2007).

    Google Scholar 

  2. Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. (2011). doi:10.1007/s11664-011-1769-8.

  3. P. Kumar, Z. Huang, and I. Dutta, Proceedings of InterPACK2009, Paper No. 89205 (IEEE/ASME), CD-ROM (2009).

  4. K. Wu, N. Wade, J. Cui, and K. Miyahara, J. Electron. Mater. 32, 5 (2003).

    Article  CAS  Google Scholar 

  5. J.G. Maveety, P. Liu, J. Vijayen, F. Hua, and E.A. Sanchez, J. Electron. Mater. 33, 1355 (2004).

    Article  CAS  Google Scholar 

  6. Q.K. Zhang and Z.F. Zhang, J. Alloys Compd. 485, 853 (2009).

    Article  CAS  Google Scholar 

  7. X. Long, I. Dutta, V. Sarihan, and D.R. Frear, J. Electron. Mater. 38, 2746 (2008).

    Google Scholar 

  8. I. Dutta, P. Kumar, and G. Subbarayan, J. Mater. 61, 29 (2009).

    CAS  Google Scholar 

  9. J.H.L. Pang and B.S. Xiong, IEEE Trans. Comp. Packag. Technol. 28, 830 (2005).

    Article  CAS  Google Scholar 

  10. C. Gandhi and M.F. Ashby, Acta Metall. 27, 699 (1979).

    Article  Google Scholar 

  11. C. Gandhi and M.F. Ashby, Acta Metall. 27, 1565 (1979).

    Article  CAS  Google Scholar 

  12. M. Manoharan and S.V. Kamat, Int. J. Fract. 73, R41 (1995).

    Article  Google Scholar 

  13. S.M. Hayes, N. Chawla, and D.R. Frear, Microelectron. Reliab. 49, 269 (2009).

    Article  CAS  Google Scholar 

  14. J.W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29, 63 (1991).

    Article  Google Scholar 

  15. R.E. Pratt and D.J. Quesnel, The Metal Science of Joining, ed. M.J. Cieslak, J.H. Perepezko, and Me.E. Glicksman (TMS, Warrendale, PA, 1992), p. 201.

  16. M.Y. He, A. Bartlett, A.G. Evans, and J.W. Hutchinson, J. Am. Ceram. Soc. 74, 767 (1991).

    Article  CAS  Google Scholar 

  17. Z. Mei, A.J. Sunwoo, and J.W. Morris Jr., Metall. Mater. Trans. A 23A, 857 (1992).

    CAS  Google Scholar 

  18. K.N. Tu, Acta Metall. 21, 347 (1973).

    Article  CAS  Google Scholar 

  19. V. Tvergaard, Int. J. Solids Struct. 47, 1611 (2010).

    Article  Google Scholar 

  20. K. Tohgo and H. Ishii, Eng. Fract. Mech. 41, 529 (1992).

    Article  Google Scholar 

  21. S. Aoki, K. Kishimoto, T. Yoshida, M. Sakata, and H.A. Richard, J. Mech. Phys. Solids 38, 195 (1990).

    Article  Google Scholar 

  22. K. Palaniswamy and W.G. Knauss, Mechanics Today, ed. S. Nemet-Nasser (New York: Pergamon, 1978), p. 87.

    Google Scholar 

  23. F. Erdogan and G.C. Sih, ASME Trans. J. Basic Eng. 85, 519 (1963).

    Article  Google Scholar 

  24. S. Suresh, C.F. Shih, A. Morrone, and N.P. O’Dowd, J. Am. Ceram. Soc. 73, 1257 (1990).

    Article  CAS  Google Scholar 

  25. T. Fett, G. Gerteisen, S. Hahnenberger, G. Martin, and D. Munz, J. Eur. Ceram. Soc. 15, 307 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Huang, Z., Dutta, I. et al. Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates. II: Fracture Mechanism Map. J. Electron. Mater. 41, 412–424 (2012). https://doi.org/10.1007/s11664-011-1806-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1806-7

Keywords

Navigation