Skip to main content
Log in

Self-Assembly for Integration of Microscale Thermoelectric Coolers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Optimum thermoelectric cooling (TEC) solutions often require the integration of component sizes inaccessible by common manufacturing techniques such as thin-film processing and robotic assembly. This work considers an application case in which small elements (100 μm to 300 μm thick) are optimal. A capillary self-assembly process is presented as a potential route to manufacturing TECs in these size ranges. A millimeter-scale demonstration of the assembly concept is presented and Monte Carlo simulation is used to study the scaling of the self-assembly approach to assemblies with more components. While assembly rate and system yield can be a challenge, several approaches are presented for increasing both rate and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Min, D.M. Rowe. Solid-State Electron. 43, 923 (1999) doi:10.1016/S0038-1101(99)00045-3

    Article  ADS  CAS  Google Scholar 

  2. V. Semenyuk, International Conference of Thermoelectric (Vienna, Austria, 2006), p. 322.

  3. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn. Nature 413, 597 (2001) doi:10.1038/35098012

    Article  PubMed  ADS  CAS  Google Scholar 

  4. R.S. Prasher, J.-Y. Chang, I. Sauciuc, S. Narasimhan, D. Chau, G. Chrysler, A. Myers, S. Prstic, and C. Hu, Int Technol. J. 9, 285 (2005)

    Google Scholar 

  5. G.J. Snyder, E.S. Toberer. Nat. Mater. 7, 105 (2008) doi:10.1038/nmat2090

    Article  PubMed  ADS  CAS  Google Scholar 

  6. T. Ikeda, V.A. Ravi, L.A. Collins, S.M. Haile, G. Jeffrey Snyder. J. Electron. Mater. 36, 716 (2007) doi:10.1007/s11664-007-0175-8

    Article  ADS  CAS  Google Scholar 

  7. T.C. Harman, M.P. Walsh. J. Electron. Mater. 34, L19 (2005) doi:10.1007/s11664-005-0083-8

    Article  ADS  CAS  Google Scholar 

  8. J. Martin, G.S. Nolas, W. Zhang, L. Chen. Appl. Phys. Lett. 90, 222112 (2007) doi:10.1063/1.2745218

    Article  ADS  Google Scholar 

  9. C.J. Morris, J. Micromech. Microeng. 18, 015022 (2008) doi:10.1088/0960-1317/18/1/015022

    Article  ADS  Google Scholar 

  10. C.J. Morris, S.A. Stauth, B.A. Parviz. IEEE Trans. Adv. Pack. 28, 600 (2005) doi:10.1109/TADVP.2005.858454

    Article  Google Scholar 

  11. H·O. Jacobs, A.R. Tao, A. Schwartz, D.H. Gracias, G.M. Whitesides. Science 296, 323 (2002) doi:10.1126/science.1069153

    Article  PubMed  ADS  CAS  Google Scholar 

  12. A.H. Cannon, L. Clifford, Henderson, Yueming Hua, and William P. King. J. Micromech. Microeng. 15, 2172 (2005) doi:10.1088/0960-1317/15/11/025

    Article  ADS  CAS  Google Scholar 

  13. E. Saeedi, 3rd Annual IEEE Conference on Automation Science and Assembly (Scottsdale, AZ, 2007), p. 375

  14. A. Miner, J. Heat Transfer 129, 805 (2007) doi:10.1115/1.2717941

    Article  Google Scholar 

  15. G.E. Bulman, E. Siivola, B. Shen, and R. Venkatasubramanian, Appl. Phys. Lett. 89, 1222117-1 (2006).

    Google Scholar 

  16. R. Yang, G. Chen. Mater. Integr. 18, 31 (2005)

    CAS  Google Scholar 

  17. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC, Taylor & Francis Group, Boca Raton, 2006).

  18. L.M. Goncalves, C. Couto, P. Alpuim, D.M. Rowe, J.H. Correia. Mater. Sci. Forum 514–516, 156 (2006)

    Article  Google Scholar 

  19. G.M. Whitesides, B. Grzybowski. Science 295, 2418 (2002) doi:10.1126/science.1070821

    Article  PubMed  ADS  CAS  Google Scholar 

  20. X. Xiong, S.-H. Liang, and K. Bohringer, IEEE International Conference on Robotics and Automation 2004 (New Orleans, LA, 2004), p. 1141

  21. W. Zheng, H·O. Jacobs. Adv. Mater. 18, 1387 (2006) doi:10.1002/adma.200502026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan B. Crane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crane, N.B., Mishra, P., Murray, J.L. et al. Self-Assembly for Integration of Microscale Thermoelectric Coolers. J. Electron. Mater. 38, 1252–1256 (2009). https://doi.org/10.1007/s11664-008-0627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0627-9

Keywords

Navigation