Skip to main content
Log in

Carbonate-Free Strontium Titanium Oxide Nanosized Crystals with Tailored Morphology: Facile Synthesis, Characterization, and Formation Mechanism

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The current study aims to investigate the synthesis and formation mechanism of the carbonate-free strontium titanium oxide nanosized crystals. Monosized strontium titanium oxide nanocrystals with tailored morphology have been successfully synthesized using a novel facile synthesis pathway. The synthesis method is based on an ultrasound-assisted wet chemical processing method. Nanocrystals are characterized and observed by X-ray diffraction, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy techniques. It was found that the ultrasonication accelerates the formation of stoichiometric strontium titanium oxide nanocrystals. Furthermore, the results show that very fine nanocrystals with an average size of about 4.8 nm and a narrow size distribution are obtained when ultrasonication is applied to the reaction mixture. As the most important outcome of this research, carbonate-free strontium titanium oxide nanocrystals are synthesized at a very low temperature of 323 K (50 °C). This temperature is much lower than the temperature required for synthesis of strontium titanium oxide nanocrystals in the similar works. This advantage has been reached, thanks to the applied modifications leading to complete removal of carbon from reaction mixture during synthesis. Moreover, formation mechanism of the nanocrystals synthesized in this work is disclosed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Ashiri, A. Nemati, M. Sasani Ghamsari, S. Sanjabi, and M. Aalipour: Mater. Res. Bull., 2011, vol. 46, pp. 2291–95.

  2. F. Davar, M.R. Loghman-Estarki, and R.Ashiri: J. Ind. Eng. Chem., DOI: 10.16/j.jiec.2014.05.002.

  3. [3] R. Ashiri, A. Moghtada, A. Shahrouzianfar and R. Ajami: J. Am. Ceram. Soc., 2014, vol. 97, pp. 2027-31.

    Article  Google Scholar 

  4. [4] T.X. Wang and W.W. Chen: Mater. Lett., 2008, vol. 62, pp. 2865-7.

    Article  Google Scholar 

  5. [5] F. Davar, M.R. Loghman-Estarki, M. Salavati -Niasari and R. Ashiri: Int. J. Appl. Ceram. Technol., 2014, vol. 11, pp. 637-44.

    Article  Google Scholar 

  6. R. Ashiri, A. Nemati and M. Sasani Ghamsari: Ceram. Int., 2014, vol. 40, pp. 8613-9.

    Article  Google Scholar 

  7. R. Ashiri, A. Nemati, M. Sasani Ghamsari, and H. Adelkhani: J. Non-Cryst. Sol., 2009, vol. 355, pp. 2480–84.

  8. [8] R. Ashiri: Metall. Mater. Trans., 2014, vol. 45B, pp. 1472-83.

    Article  Google Scholar 

  9. [9] R. Ashiri: Metall Mat Trans., 2014, vol. 45A, pp. 4138-54.

    Article  Google Scholar 

  10. [10] R. Ashiri: Metall Mat Trans, 2012, vol. 43A, pp. 4414-26.

    Article  Google Scholar 

  11. R. Ashiri, A. Nemati, M. Sasani Ghamsari, and M.M. Dastgahi: J. Mater. Sci.: Mater. Electron., DOI: 10.1007/s10854-014-2312-5.

  12. [12] J.Q. Zheng, Y.J. Zhu, J.S. Xu and B.Q. Lu: Mater. Lett., 2013, vol. 100, pp. 62-5.

    Article  Google Scholar 

  13. [13] C.N. George, J.K. Thomas and R. Jose: J. Alloy. Compd., 2009, vol. 48, pp. 711-5.

    Article  Google Scholar 

  14. [14] Sh. Zhang and J. Liu: Mater. Sci. Eng., 2004, vol. 110B, pp. 11-7.

    Article  Google Scholar 

  15. [15] L.F.D. Silva and L.J.Q. Maia: Mater. Chem. Phys., 2011, vol. 125, pp. 168-73.

    Article  Google Scholar 

  16. [16] H.L. Li and Z. N. Du: Mater. Lett., 2010, vol. 64, pp. 431-4.

    Article  Google Scholar 

  17. [17] H. Cui, M. Zayat and D. Levy: J. Non-Cryst. Solid., 2007, vol. 353, pp. 1011-6.

    Article  Google Scholar 

  18. [18] T.J. Mason and J.P. Lolimer: Applied Sonochemistry. Wiley-VCH Verlag, U.K., 2002.

    Book  Google Scholar 

  19. [19] M. Xu and Y.N. Lu: J. Am. Ceram. Soc., 2006, vol. 89, pp. 3631-4.

    Article  Google Scholar 

  20. [20] M. Xu and Y.N. Lu: Powder. Technol., 2006, vol. 161, pp. 185-9.

    Article  Google Scholar 

  21. [21] R. Ashiri: Vib. Spec., 2013, vol. 66, pp. 24-9.

    Article  Google Scholar 

  22. [22] E. Bacha and Ph. Deniard: Thin. Solid. Films., 2011, vol. 519, pp. 5816-9.

    Article  Google Scholar 

  23. [23] Y.G. Adewuyi: Ind. Eng. Chem. Res., 2001, vol. 40, pp. 4681-715.

    Article  Google Scholar 

  24. [24] K.S. Suslick: Science, 1990, vol. 247, pp. 1439-45.

    Article  Google Scholar 

  25. [25] E.B. Flint and K.S. Suslick: Science, 1991, vol. 253, pp. 1397-9.

    Article  Google Scholar 

  26. R. Ashiri, R. Ajami, and A. Moghtada: Int. J. Appl. Ceram. Technol., DOI: 10.1111/ijac.12315.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouholah Ashiri.

Additional information

Manuscript submitted June 30, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashiri, R., Moghtada, A. Carbonate-Free Strontium Titanium Oxide Nanosized Crystals with Tailored Morphology: Facile Synthesis, Characterization, and Formation Mechanism. Metall Mater Trans B 45, 1979–1986 (2014). https://doi.org/10.1007/s11663-014-0213-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0213-x

Keywords

Navigation