Skip to main content
Log in

Role of Different Kinds of Boundaries Against Cleavage Crack Propagation in Low-Temperature Embrittlement of Low-Carbon Martensitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present paper investigated the relationship between low-temperature embrittlement and microstructure of lath martensite in a low-carbon steel from both microstructural and crystallographic points of view. The fracture surface of the specimen after the miniaturized Charpy impact test at 98 K (−175 °C) mainly consisted of cleavage fracture facets parallel to crystallographic {001} planes of martensite. Through the crystallographic orientation analysis of micro-crack propagation, we found that the boundaries which separated different martensite variants having large misorientation angles of {001} cleavage planes could inhibit crack propagation. It was then concluded that the size of the aggregations of martensite variants belonging to the same Bain deformation group could control the low-temperature embrittlement of martensitic steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Jin, J. W. Morris and V. F. Zackay: Metall. Trans. A, 1975, vol. 6A, pp. 141-9.

    Article  Google Scholar 

  2. S. Takaki, K. Kawasaki and Y. Kimura: J. Mater. Process. Technol., 2001, vol. 117, pp. 359-63.

    Article  Google Scholar 

  3. N. Tsuji, S. Okuno, Y. Koizumi and Y. Minamino: Mater. Trans., 2004, vol. 45, pp. 2272-81.

    Article  Google Scholar 

  4. R. Song, D. Ponge and D. Raabe: Acta Mater., 2005, vol. 53, pp. 4881-92.

    Article  Google Scholar 

  5. A.-F. Gourgues, H. M. Flower and T. C. Lindley: Mater. Sci. Technol., 2000, vol. 16, pp, 26-40

    Article  Google Scholar 

  6. A. R. Marder and G. Krauss: Trans. ASM, 1967, vol. 60, pp. 651-60.

    Google Scholar 

  7. J. M. Marder and A. R. Marder: Trans. ASM, 1969, vol. 62, pp. 1-10.

    Google Scholar 

  8. S. Matsuda, T. Inoue, H. Mimura and Y. Okamura: Proc. of Int. Sympo. on Toward improved Ductility and Toughness, 1971, pp. 47–66.

  9. L. Zhijun, S. Junchang, S. Hang, D. Yuehua, Y. Caifu and Z. Xing: J. Iron Steel Res. Int., 2010, vol. 17, pp. 40-8.

    Google Scholar 

  10. C. Wang, M. Wang, J. Shi, W. Hui and H. Dong: Scripta Mater., 2008, vol. 58, pp. 492-5.

    Article  Google Scholar 

  11. T. Hanamura, F. Yin and K. Nagai: ISIJ Int., 2004, vol. 44, pp. 610-7.

    Article  Google Scholar 

  12. J. W. Morris, C. S. Lee and Z. Guo: ISIJ Int., 2003, vol. 43, pp. 410-9.

    Article  Google Scholar 

  13. J. W. Morris: ISIJ Int., 2011, vol. 51, pp. 1569-75.

    Article  Google Scholar 

  14. J. W. Morris, C. Kinney, K. Pytlewski and Y. Adachi: Sci. technol. Adv. Mater., 2013, vol. 14, pp. 1-9.

    Article  Google Scholar 

  15. A. Kimura, A. Koya, T. Morimura and T. Misawa: Mater. Sci. Eng. A, 1994, vol. 176A, pp. 425-30.

    Article  Google Scholar 

  16. A. R. Marder and G. Krauss: Trans. ASM, 1969, vol. 62, pp. 957-64.

    Google Scholar 

  17. P. M. Kelly, A. Jostsons and R. G. Blake: Acta Metall. Mater., 1990, vol. 38, pp. 1075-81.

    Article  Google Scholar 

  18. M. X. Zhang and P. M. Kelly: Scr. Mater., 2002, vol. 47, pp. 749-55.

    Article  Google Scholar 

  19. T. Maki: Proc. of the Int. Sympo. on Steel Science, 1971, pp. 1–10.

  20. S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789-99.

    Article  Google Scholar 

  21. [21] S. Morito, X. Huang, T. Furuhara, T. Maki and N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323-31.

    Article  Google Scholar 

  22. S. Morito, Y. Adachi and T. Ohba: Mater. Trans., 2009, vol. 50, pp. 1919-23.

    Article  Google Scholar 

  23. C.C. Kinney, K.R. Pytlewski, A.G. Khachaturyan and J.W. Morris: Acta Mater., 2014, vol. 69, pp. 372-85.

    Article  Google Scholar 

  24. S. Zhang, S. Morito and Y. Komizo: ISIJ Int., 2012, vol. 52, pp. 510-15.

    Article  Google Scholar 

  25. T. Furuhara, H. Kawata, S. Morito and T. Maki: Mat. Sci. Eng. A, 2006, vol. 431A, pp. 228-36.

    Article  Google Scholar 

  26. H. Kitahara, R. Ueji, N. Tsuji and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279-88.

    Article  Google Scholar 

  27. M. Tsuboi, A. Shibata, D. Terada and N. Tsuji: Mater. Today: Proc., 2015, vol. 2, pp. S655-8.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Grant-in-Aid for Scientific Research (B) (No. 15H04158), Grant-in-Aid for JSPS Fellows (No. 26·2863), and the Elements Strategy Initiative for Structural Materials (ESISM), through the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and the Japan Society for the Promotion of Science (JSPS). The authors greatly appreciate all the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mizuki Tsuboi.

Additional information

Manuscript submitted October 21, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuboi, M., Shibata, A., Terada, D. et al. Role of Different Kinds of Boundaries Against Cleavage Crack Propagation in Low-Temperature Embrittlement of Low-Carbon Martensitic Steel. Metall Mater Trans A 48, 3261–3268 (2017). https://doi.org/10.1007/s11661-017-4107-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4107-9

Keywords

Navigation