Skip to main content
Log in

Evaluation of Interface Boundaries in 9Cr-1Mo Steel After Thermal and Thermomechanical Treatments

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The grain boundary character distribution (GBCD) and microstructure in 9Cr-1Mo ferritic/martensitic steel subjected to different heat treatments and thermomechanical treatments (TMTs) have been evaluated using electron backscatter diffraction (EBSD) technique. Microstructures obtained through displacive transformation of high-temperature austenite yielded higher amounts of Σ1-29 coincidence site lattice (CSL) boundaries (from 29 to 38 pct) compared with the ferrite grains obtained by diffusional transformation (~16 pct) or by recrystallization process (~14 pct). Specifically, the low-angle (Σ1), Σ3, Σ11, and Σ25b boundaries were enhanced in the tempered martensite substructure, whereas the prior austenite grain boundaries were largely of random type. Misorientation between the product ferrite variants for ideal orientation relationships during austenite transformation was calculated and compared with CSL misorientation to find its proximity based on Brandon’s criteria. The observed enhancements in Σ1, Σ3, and Σ11 could be interpreted based on Kurdjumov–Sachs (K–S) relation, but Nishiyama–Wassermann (N–W) relation was needed to understand Σ25b formation. The amounts of CSL boundaries in the tempered martensite structure were not significantly influenced by austenite grain size or the kinetics of martensitic transformation. In mixed microstructures of “polygonal ferrite + tempered martensite”, the frequencies of CSL boundaries were found to systematically decrease with increasing amounts of diffusional/recrystallized ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.L. Klueh: Int. Mater. Rev., 2005, vol. 50 no. 5, pp. 425-32.

    Article  Google Scholar 

  2. F.W. Noble, B.A. Senior and B.L. Eyre: Acta Metall. Mater., 1990, vol. 38 No. 5, pp. 709-17.

    Article  CAS  Google Scholar 

  3. I. Olefjord: Int. Met. Rev., 1978, vol. 4, pp. 149-63.

    Article  Google Scholar 

  4. T. Watanabe: J. Mater. Sci., 2011, vol. 46, pp. 4095-4115.

    Article  CAS  Google Scholar 

  5. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479-84.

    Article  CAS  Google Scholar 

  6. T. Watanabe, H. Fujii, H. Oikawa and K.I. Arai: Acta Metall., 1989, vol. 37 no. 3, pp. 941-52.

    Article  CAS  Google Scholar 

  7. A.P. Sutton and R.W. Balluffi: Interfaces in Crystalline Materials, Oxford University Press, New York, 1995.

    Google Scholar 

  8. V. Randle: Acta Mater., 1997, vol. 46 no. 5, pp. 1459-80.

    Article  Google Scholar 

  9. P. Lejček, S. Hofmann, V. Paidar : Acta Mater., 2003, vol. 51, pp. 3951-3963.

    Article  Google Scholar 

  10. V. Randle: Acta Mater., 2004, vol. 52, pp. 4067-81.

    Article  CAS  Google Scholar 

  11. S.Q. Cao, J.X. Zhang, J.S. Wu, L. Wang and J.G. Chen: Mater. Sci. Engg. A, 2005, vol. 392A, pp. 203-08.

    Article  Google Scholar 

  12. T. Watanabe and S. Tsurekawa: Acta Mater., 1999, vol. 47 no. 15, pp. 4171-85.

    Article  CAS  Google Scholar 

  13. S. Tsurekawa, K. Okamoto, K. Kawahara and T. Watanabe: J. Mater. Sci., 2005, vol. 40, pp. 895-901.

    Article  CAS  Google Scholar 

  14. H. Kitahara, R. Ueji, N. Tsuji and Y. Minamino: Acta Mater., 2006, vol. 54, pp.1279-88.

    Article  CAS  Google Scholar 

  15. S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789-99.

    Article  CAS  Google Scholar 

  16. B. Sonderegger, S. Mitsche and H. Cerjak: Mater. Charact., 2007, vol. 58, pp. 874-82.

    Article  CAS  Google Scholar 

  17. J.J. Sanchez-Hanton and R.C. Thomson: Mater. Sci. Eng. A, 2007, vols. 460A–461A, pp. 261–67.

  18. G. Gupta, B. Alexandreanu and G.S. Was: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 717-19.

    Article  CAS  Google Scholar 

  19. G. Gupta, P. Ampornrat, X. Ren, K. Sridharan, T.R. Allen and G.S. Was: J. Nucl. Mater., 2007, vol. 361, pp. 160-73.

    Article  CAS  Google Scholar 

  20. T. Karthikeyan, V. Thomas Paul, S.K. Mishra, S. Saroja, M. Vijayalakshmi and I. Samajdar: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2030–32.

    Article  CAS  Google Scholar 

  21. F.B. Pickering and A.D. Vassiliou: Met. Technol. 1980, vol. 7, pp. 409-13.

    CAS  Google Scholar 

  22. P. Parameswaran, S. Saroja, M. Vijayalakshmi and V.S. Raghunathan: J. Nucl. Mater., 1996, vol. 232, pp. 226-32.

    Article  CAS  Google Scholar 

  23. T. Karthikeyan, V. Thomas Paul, S. Saroja, A. Moitra, G. Sasikala and M. Vijayalakshmi: J. Nucl. Mater., 2011, vol. 419, pp. 256–62.

    Article  CAS  Google Scholar 

  24. F.J. Humphreys : J. Mater. Sci., 2001, vol. 36, pp. 3833-54.

    Article  CAS  Google Scholar 

  25. V. Randle: Int. Mater. Rev., 2004, vol. 49 no. 1, pp. 1-11.

    Article  CAS  Google Scholar 

  26. V. Randle: Mater. Charact., 2009, vol. 60, pp. 913-22.

    Article  CAS  Google Scholar 

  27. Y. He, S. Godet and J.J. Jonas: Acta Mater., 2005, vol. 53, pp. 1179-90.

    Article  CAS  Google Scholar 

  28. T. Karthikeyan, S. Saroja and M. Vijayalakshmi: Scripta Mater., 2006, vol. 55, pp. 771-74.

    Article  CAS  Google Scholar 

  29. D.H. Warrington and M. Boon: Acta Metall., 1975, vol. 23, pp. 599-607.

    Article  Google Scholar 

  30. G.B. Olson and W.S. Owens, eds.: Martensite, ASM, New York, 1992.

  31. S. Saroja, P. Parameswaran, M. Vijayalakshmi and V.S. Raghunathan: Acta Metall. Mater., 1995, vol. 43 no. 8, pp. 2985-3000.

    Article  CAS  Google Scholar 

  32. G.E. Lloyd: J. Struct. Geol., 2000, vol. 22, pp. 1675-93.

    Article  Google Scholar 

  33. L. Ryde : Mater. Sci. Technol., 2006, vol. 22, pp. 1297-306.

    Article  CAS  Google Scholar 

  34. A.A. Gazder, M. Sánchez-Araiza, J.J. Jonas, E.V. Pereloma: Acta Mater., 2011, vol. 59, pp. 4847-65.

    Article  CAS  Google Scholar 

  35. T. Karthikeyan, M.K. Dash, S. Saroja, and M. Vijayalakshmi: J. Microscopy, 2013, vol. 249 (1), pp. 26-35.

Download references

Acknowledgments

The authors would like to thank Mr. S.C. Chetal, Director, Indira Gandhi Centre for Atomic Research (IGCAR), and Dr. T. Jayakumar, Director-Metallurgy and Materials Group, IGCAR, India for their sustained support and encouragement during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Karthikeyan.

Additional information

Manuscript submitted March 27, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karthikeyan, T., Dash, M.K., Saroja, S. et al. Evaluation of Interface Boundaries in 9Cr-1Mo Steel After Thermal and Thermomechanical Treatments. Metall Mater Trans A 44, 1673–1685 (2013). https://doi.org/10.1007/s11661-012-1549-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1549-y

Keywords

Navigation