Skip to main content
Log in

The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An additive layer manufacture (ALM) technique, electron beam melting, has been used for the production of simple geometries, from prealloyed Ti-6Al-4V powder. Microstructure, texture, and mechanical properties achieved under standard operating conditions have been investigated. Three transitional regions are observed with a change in microstructural formation dependent on the thermal mass of deposited material. Prior β-phase reconstruction, from room temperature α-phase electron backscatter diffraction (EBSD) data, reveals a strong texture perpendicular to the build axis. Variation of build temperature within the processing window of 898 K to 973 K (625 °C to 700 °C) is seen to have a significant effect on the properties and microstructure of both as-deposited and hot isostatically pressed (HIP) samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. O.L.A. Harrysson, O. Cansizoglu, D.J. Marcellin-Little, D.R. Cormier, and H.A. West II: Mater. Sci. Eng., 2008, vol. C28, pp. 366–73.

  2. L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker: Mater. Charact., 2009, vol. 60, pp. 96–105.

    Article  CAS  Google Scholar 

  3. O. Cansizoglu, O. Harrysson, D. Cormier, H. West, and T. Mahale: Mater. Sci. Eng., 2008, vol. A492, pp. 468–74.

    CAS  Google Scholar 

  4. M. Gäumann, C. Bezençon, P. Canalis, and W. Kurz: Acta Mater., 2001, vol. 49, pp. 1051–62.

    Article  Google Scholar 

  5. R.J. Moat, A.J. Pinkerton, L. Li, P.J. Withers, and M. Preuss: Acta Mater., 2009, vol. 57, pp. 1220–29.

    Article  CAS  Google Scholar 

  6. P.A. Kobryn and S.L. Semiatin: J. Mater. Process. Technol., 2003, vol. 135, pp. 330–39.

    Article  CAS  Google Scholar 

  7. M. Matsumoto, M. Shiomi, K. Osakada, and F. Abe: Int. J. Mach. Tool. Manufact., 2002, vol. 42, pp. 61–67.

    Article  Google Scholar 

  8. D. Cormier, O. Harrysson, and H. West: Rapid Prototyp. J., 2004, vol. 10, pp. 35–41.

    Article  Google Scholar 

  9. P.S. Davies: Ph.D. Thesis, The University of Sheffield, Sheffield, United Kingdom, 2009, pp. 114–73.

  10. N. Gey and M. Humbert: J. Mater. Sci., 2003, vol. 38, pp. 1289–94.

    Article  CAS  Google Scholar 

  11. M. Humbert, F. Wagner, H. Moustahfid, and C. Esling: J. Appl. Crystallogr., 1995, vol. 28, pp. 571–76.

    Article  CAS  Google Scholar 

  12. D. Rosenthal: Trans. ASME, 1946, vol. 11, pp. 849–66.

    Google Scholar 

  13. S. Bontha, N.W. Klingbeil, P.A. Kobryn, and H.L. Fraser: J. Mater. Process. Technol., 2006, vol. 178, pp. 135–42.

    Article  CAS  Google Scholar 

  14. X. Wu, J. Liang, J. Mei, C. Mitchell, P.S. Goodwin, and W. Voice: Mater. Des., 2004, vol. 25, pp. 137–44.

    CAS  Google Scholar 

  15. L. Qian, J. Mei, J. Liang, and X. Wu: Mater. Sci. Technol., 2005, vol. 21, pp. 299–305.

    Article  Google Scholar 

  16. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974. pp. 157–60.

    Google Scholar 

  17. S.L. Semiatin, P.N. Fagin, M.G. Glavicic, I.M. Sukonnik, and O.M. Ivasishin: Mater. Sci. Eng., 2001, vol. A299, pp. 225–34.

    CAS  Google Scholar 

  18. G.W. Greenwood and R.H. Johnson: Proc. R. Soc. London A Math. Phys. Sci., 1965, vol. 283A, pp. 403–22.

    Article  ADS  Google Scholar 

  19. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 4th ed., Trans Tech Publications, Hampshire, United Kingdom, 1998, pp. 65–89.

    Google Scholar 

  20. T. Ahmed and H.J. Rack: Mater. Sci. Eng., 1998, vol. A243, pp. 206–11.

    CAS  Google Scholar 

  21. S. Neelakantan, P.E.J. Rivera-Díaz-del-Castillo, and S. van der Zwaag: Scripta Mater., 2009, vol. 60, pp. 611–14.

    Article  CAS  Google Scholar 

  22. Materials Properties Handbook: Titanium Alloys, R. Boyer, G. Welsch, and E.W. Coolings, eds., ASM INTERNATIONAL, Materials Park, OH, 1994, p. 516.

  23. A.D. McQuillan and M.K. McQuillan: Titanium, Butterworths Scientific Publications, London, 1956, pp. 307–21.

  24. Titanium and Titanium Alloys, C. Leyens and M. Peters, eds., Wiley-VCH, Darmstadt, Germany, 2003, p. 14.

  25. F.X. Gil Mur, D. Rodríguez, and J.A. Planell: J. Alloys Compd., 1996, vol. 234, pp. 287–89.

    Article  CAS  Google Scholar 

  26. J. Mazumder, A. Schifferer, and J. Choi: Mater. Res. Innovations, 1999, vol. 3, pp. 118–31.

    Article  CAS  Google Scholar 

  27. H. Jones: Rapid Solidification of Metals and Alloys, The Institution of Metallurgists, Chameleon Press, London, 1982, p. 43.

    Google Scholar 

  28. J. Tiley, T. Searles, E. Lee, S. Kar, R. Banerjee, J.C. Russ, and H.L. Fraser: Mater. Sci. Eng., 2004, vol. A372, pp. 191–98.

    CAS  Google Scholar 

  29. G. Lütjering and J.C. Williams: Titanium, Springer, Leipzig, Germany, 2003, p. 218.

    Google Scholar 

  30. M. Donachie, Jr.: Titanium, A Technical Guide, ASM INTERNATIONAL, Metals Park, OH, 1988, p. 56.

    Google Scholar 

  31. S.S. White and R. Bakish: in Introduction to Electron Beam Technology, R. Bakish, ed., Wiley, New York, NY, 1962, p. 225.

    Google Scholar 

  32. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, London, 1993, pp. 185–262.

    Google Scholar 

  33. R. Rai, J.W. Elmer, T.A. Palmer, and T. DebRoy: J. Appl. Phys. D, 2007, vol. 40, pp. 5753–66.

    Article  CAS  ADS  Google Scholar 

  34. S. Lampman: Weld Integrity and Performance, ASM INTERNATIONAL, Materials Park, OH, 1997, pp. 6–10.

    Google Scholar 

  35. M. McLean: Directionally Solidified Materials for High Temperature Service, TMS, London, 1983, pp. 20–23.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the help and advice given by Drs. Peter Davies and Bradley Wynne (University of Sheffield), with prior β reconstructions and texture, and Arcam AB of Sweden for their help and useful discussions. This work has been financed by Yorkshire Forward, the Engineering and Physical Sciences Research Council (EPSRC), and Renault Formula 1. The authors express their gratitude for this financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Al-Bermani.

Additional information

Manuscript submitted December 10, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Bermani, S.S., Blackmore, M.L., Zhang, W. et al. The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V. Metall Mater Trans A 41, 3422–3434 (2010). https://doi.org/10.1007/s11661-010-0397-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0397-x

Keywords

Navigation