Skip to main content

Advertisement

Log in

High-Strength Low-Carbon Ferritic Steel Containing Cu-Fe-Ni-Al-Mn Precipitates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An investigation of a low-carbon, Fe-Cu–based steel, for Naval ship hull applications, with a yield strength of 965 MPa, Charpy V-notch absorbed impact-energy values as high as 74 J at –40 °C, and an elongation-to-failure greater than 15 pct, is presented. The increase in strength is derived from a large number density (approximately 1023 to 1024 m−3) of copper-iron-nickel-aluminum-manganese precipitates. The effect on the mechanical properties of varying the thermal treatment was studied. The nanostructure of the precipitates found within the steel was characterized by atom-probe tomography. Additionally, initial welding studies show that a brittle heat-affected zone is not formed adjacent to the welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The term NUCu stands for Northwestern University copper alloyed steel.

  2. In earlier publications and conference proceedings, we denoted the same heats as NUCu-150-x or AlNiCu-150-x. We make the change to NUCu-140-x to better relate the steel to similar Cu alloyed steels previously developed at Northwestern University.

  3. IVAS is a trademark of Imago Scientific Instruments, Madison, WI.

References

  1. A.P. Coldren and T.B. Cox: Laboratory DTR, 1986

  2. E.J. Czyrycka, R.E. Link, R.J. Wong, D.A. Aylor, T.W. Montemarano, and J.P. Gudas: Nav. Eng. J., 1990, vol. 102, p. 63

    Article  Google Scholar 

  3. S.K. Dhua, D. Mukerjee, D.S. Sarma: Metall. Mater. Trans. A, 2001, vol. 32A, p. 2259

    Article  CAS  Google Scholar 

  4. S.K. Dhua, A. Ray, D.S. Sarma: Mater. Sci. Eng. A, 2001, vol. 318, p. 197

    Article  Google Scholar 

  5. T.W. Montemarano, B.P. Sack, J.P. Gudas, M.G. Vassilaros, H.H. Vanderveldt: J. Ship Prod., 1986, vol. 2, p. 145

    Google Scholar 

  6. A.K. Sinha: Physical Metallurgy Handbook, McGraw-Hill, New York, NY, 2003

    Google Scholar 

  7. R.W.K. Honeycombe, H.K.D.H. Bhadeshia: Steels Microstructure and Properties, Arnold, London, 1996

    Google Scholar 

  8. R.P. Foley, M.E. Fine: Int. Conf. on Processing, Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels, A.J. DeArdo, ed., ISS and TMS, Pittsburgh, PA, 1991, p. 315

    Google Scholar 

  9. R.P. Foley: Ph.D. Thesis, Northwestern University, Evanston, IL, 1992

  10. C.S. Smith, E.W. Palmer: Trans. AIME, 1933, vol. 105, p. 133

    Google Scholar 

  11. C.H. Lorig: Metal Progr., 1935, vol. 27, p. 53

    CAS  Google Scholar 

  12. C.H. Lorig, R.R. Adam: Copper as an Alloying Element in Steel and Cast Iron, McGraw-Hill, New York, NY, 1948

    Google Scholar 

  13. J.L. Gregg, B.N. Daniloff: The Alloys of Iron and Copper, McGraw-Hill, New York, NY, 1934

    Google Scholar 

  14. M.E. Fine, R. Ramanathan, S. Vaynman, S.P. Bhat: Int. Symp. on Low-Carbon Steels for the 90’s, R.I. Asfahani, G. Tither, eds., TMS, Pittsburgh, PA, 1993, p. 511

    Google Scholar 

  15. S. Vaynman, M.E. Fine: Int. Symp. on Steel for Fabricated Structures, R.I. Asfahani, R.L. Bodnar, eds., AISI and ASM International, Cincinnati, OH, 1999, p. 59

    Google Scholar 

  16. S. Vaynman, M.E. Fine, G. Ghosh, S.P. Bhat: in Materials for The New Millennium, K.P. Chong, ed., ASCE, Washington, DC, 1996, vol. 2, p. 1551

    Google Scholar 

  17. S. Vaynman, R.S. Guico, M.E. Fine, S.J. Manganello: Metall. Mater. Trans. A, 1997, vol. 28A, p. 1274

    Article  CAS  Google Scholar 

  18. S. Vaynman, M.E. Fine, R.I. Asfahani, D.M. Bormet, C. Hahin: in Microalloyed Steel, R.I. Asfahani, R.L. Bodnar, M.J. Merwin, eds., ASM, Columbus, OH, 2002

    Google Scholar 

  19. S.R. Goodman, S.S. Brenner, J.R. Low Jr.: Metall. Trans., 1973, vol. 4, p. 2363

    Article  CAS  Google Scholar 

  20. S.R. Goodman, S.S. Brenner, J.R. Low Jr.: Metall. Trans., 1973, vol. 4, p. 2371

    Article  CAS  Google Scholar 

  21. M.S. Gagliano: in Co-Precipitation of Copper and Niobium Carbide in a Low Carbon Steel, Northwestern University, Evanston, IL, 2002, p. 239

    Google Scholar 

  22. M.S. Gagliano, M.E. Fine: Calphad, 2001, vol. 25, p. 207

    Article  CAS  Google Scholar 

  23. M.S. Gagliano, M.E. Fine: Metall. Mater. Trans. A, 2004, vol. 35A, p. 2323

    Article  CAS  Google Scholar 

  24. M.K. Miller: Atom Probe Tomography, Kluwer Academic/Plenum Publishers, New York, NY, 2000

    Google Scholar 

  25. T.F. Kelly, M.K. Miller: Rev. Sci. Instrum., 2007, vol. 78, p. 031101

    Article  CAS  Google Scholar 

  26. D.N. Seidman: Annu. Rev. Mater. Res., 2007, vol. 37, p. 127

    Article  CAS  Google Scholar 

  27. D. Isheim, D.N. Seidman: Surf. Interface Anal., 2004, vol. 36, p. 569

    Article  CAS  Google Scholar 

  28. D. Isheim, M.S. Gagliano, M.E. Fine, D.N. Seidman: Acta Mater., 2006, vol. 54, p. 841

    Article  CAS  Google Scholar 

  29. S. Vaynman, M.E. Fine, S. Lee, H.D. Espinosa: Scripta Mater., 2006, vol. 55, p. 351

    Article  CAS  Google Scholar 

  30. D. Isheim, R.P. Kolli, M.E. Fine, D.N. Seidman: Scripta Mater., 2006, vol. 55, p. 35

    Article  CAS  Google Scholar 

  31. T. Watanabe: Tetsu-to-Hagané, 1975, vol. 61, p. 2456

    CAS  Google Scholar 

  32. R.A. Fournelle, E.A. Grey, M.E. Fine: Metall. Trans. A, 1976, vol. 7A, p. 669

    CAS  Google Scholar 

  33. C. Asada and T. Watanabe: Trans. JIM, 1968, vol. 9, suppl., p. 387

  34. S.C. Kolesar: Precipitation Processes in Fe-Base, Ferritic, Ni-Al Alloys, Northwestern University, Evanston, IL, 1971

    Google Scholar 

  35. H.A. Calderon: Development of BCC Fe Base Alloys with Coherent Precipitates, Northwestern University, Evanston, IL, 1983

    Google Scholar 

  36. T.T. Tsong: Atom-Probe Field Ion Microscopy, Cambridge University Press, Cambridge, United Kingdom, 1990

    Google Scholar 

  37. O.C. Hellman, J.A. Vandenbroucke, J. Blatz du Rivage, D.N. Seidman: Mater. Sci. Eng. A, 2002, vol. 327, p. 29

    Article  Google Scholar 

  38. O.C. Hellman, J. Blatz du Rivage, D.N. Seidman: Ultramicrosc., 2003, vol. 95, p. 199

    Article  CAS  Google Scholar 

  39. O.C. Hellman, D.N. Seidman: Mater. Sci. Eng. A, 2002, vol. 327, p. 24

    Article  Google Scholar 

  40. R.P. Kolli, D.N. Seidman: Microsc. Microanal., 2007, vol. 13, p. 272

    Article  CAS  Google Scholar 

  41. M.K. Miller, E.A. Kenik: Microsc. Microanal. 2004, vol. 10, p. 336

    CAS  Google Scholar 

  42. C.J. McMahon Jr.: Interface Sci., 2004, vol. 12, p. 141

    Article  CAS  Google Scholar 

  43. D.F. Stein, L.A. Heldt: in Interfacial Segregation, W.C. Johnson, J.M. Blakely, eds., ASM, Metals Park, OH, 1979

    Google Scholar 

  44. M. Guttman, D. McLean: in Interfacial Segregation, W.C. Johnson, J.M. Blakely, eds., ASM, Metals Park, OH, 1979

    Google Scholar 

  45. E.O. Hall: P. Phys. Soc., Ser. B, 1951, vol. 64, p. 747

    Article  Google Scholar 

  46. N.J. Petch: J. Iron Steel Inst., 1954, vol. 173, p. 25

    Google Scholar 

  47. A.J. DeArdo: Int. Mater. Rev., 2003, vol. 48, p. 371

    Article  CAS  Google Scholar 

  48. A. Urakami, M.E. Fine: Scripta Mater. 1970, vol. 4, p. 667

    Article  Google Scholar 

  49. M.E. Fine, A. Tongen, M.S. Gagliano: in Electron Microscopy: Its Role in Materials Research, The Mike Meshii Symp., J.R. Weertman, M.E. Fine, K. Faber, W. King, P. Liaw, eds., TMS, San Diego, CA, 2003, p. 229

    Google Scholar 

  50. M.E. Fine, D. Isheim: Scripta Mater., 2005, vol. 53, p. 115

    Article  CAS  Google Scholar 

  51. K.F. Russell, L.M. Brown: Acta Metall., 1972, vol. 20, p. 969

    Article  CAS  Google Scholar 

  52. E. Nembach: Particle Strengthening of Metals and Alloys, Wiley-Interscience, New York, NY, 1997

    Google Scholar 

  53. T. Harry, D.J. Bacon: Acta Mater., 2002, vol. 50, p. 209

    Article  CAS  Google Scholar 

  54. S. Lozano-Perez, M.L. Jenkins, J.M. Titchmarsh: Philos. Mag. Lett., 2006, vol. 86, p. 367

    Article  CAS  Google Scholar 

  55. J.Z. Liu, A. van de Walle, M.D. Asta: Phys. Rev. B: Condens. Matter, 2005, vol. 72, p. 144109

    Google Scholar 

  56. K. Osamura, H. Okuda, M. Ochiai, M. Takashima, K. Asano, M. Furusaka, K. Kishida, F. Kurosawa: ISIJ Int., 1994, vol. 34, p. 359

    Article  CAS  Google Scholar 

  57. A. Deschamps, M. Militzer, W.J. Poole: ISIJ Int., 2001, vol. 41, p. 196

    Article  CAS  Google Scholar 

  58. G.M. Worrall, J.T. Buswell, C.A. English, M.G. Hetherington, G.D.W. Smith: J. Nucl. Mater., 1987, vol. 148, p. 107

    Article  CAS  Google Scholar 

  59. P.J. Pareige, K.F. Russell, M.K. Miller: Appl. Surf. Sci. 1996, vols. 94–95, p. 362

    Article  Google Scholar 

  60. R. Kampmann, R. Wagner: in Atomic Transport and Defects in Metals by Neutron Scattering, C. Janot, W. Petry, D. Richter, T. Springer, eds., Springer-Verlag, Berlin, 1986. p. 73

    Google Scholar 

  61. M.E. Fine, J.Z. Liu, M.D. Asta: Mater. Sci. Eng. A, 2007, vol. 463, p. 271

    Article  CAS  Google Scholar 

  62. K. Osamura, H. Okuda, K. Asano, M. Furusaka, K. Kishida, F. Kurosawa, R. Uemori: ISIJ Int., 1994, vol. 34, p. 346

    Article  CAS  Google Scholar 

  63. T. Koyama, H. Onodera: Mater. Trans., 2005, vol. 46, p. 1187

    Article  CAS  Google Scholar 

  64. T. Koyama, K. Hashimoto, H. Onodera: Mater. Trans., 2006, vol. 47, p. 2765

    Article  CAS  Google Scholar 

  65. R.P. Kolli, Z. Mao, D.T. Keane, and D.N. Seidman, Appl. Phys. Lett., 2007, vol. 91, p. 241903

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Office of Naval Research (Grant No. N00014-03-1-0252), Dr. Julie Christodoulou, grant officer. Atom-probe tomographic analyses were performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT), and the LEAP tomograph was purchased with funding from the NSF-MRI (Grant No. DMR-0420532, Dr. Charles Bouldin, monitor) and ONR-DURIP (Grant No. N00014-0400798, Dr. Julie Christodoulou, monitor) programs. Additionally, the LEAP tomograph was enhanced in late April 2006 with a picosecond laser with funding from ONR-DURIP (Grant No. N0014-06-1-0539). This work made use of Central Facilities supported by the MRSEC program of the National Science Foundation (Grant No. DMR-0520513) at the Materials Research Center of Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semyon Vaynman.

Additional information

Manuscript submitted May 11, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaynman, S., Isheim, D., Prakash Kolli, R. et al. High-Strength Low-Carbon Ferritic Steel Containing Cu-Fe-Ni-Al-Mn Precipitates. Metall Mater Trans A 39, 363–373 (2008). https://doi.org/10.1007/s11661-007-9417-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9417-x

Keywords

Navigation