Skip to main content

Advertisement

Log in

Effects of Deformation Twinning on Energy Dissipation in High Rate Deformed Zirconium

  • Symposium: Dynamic Behavior of Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The posit that deformation twinning can result in energy storage is examined by measuring the temperature increase of zirconium during adiabatic compression at high strain rates and correlating the response with the resulting microstructure. After examining the underlying assumptions of homogeneous deformation via microscopy and numerical modeling, it is determined that the occurrence of twinning does not correlate with significant energy storage relative to dissipation, and the appearance of storage may be caused by inhomogeneity in the deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics, Tokyo.

References

  1. W.S. Farren, G.I. Taylor: Proc. R. Soc. London A, 1925, vol. 107, pp. 422–51

    Article  Google Scholar 

  2. H. Quinney, G.I. Taylor: Proc. R. Soc. London A, 1937, vol. 163, pp. 157–81

    CAS  Google Scholar 

  3. M.B. Bever, D.L. Holt, and A.L. Titchener: Progr. Mater. Sci., 1973, vol. 17

  4. J.J. Mason, A.J. Rosakis, G. Ravichandran: Mech. Mater., 1994, vol. 17, pp. 135–45

    Article  Google Scholar 

  5. J. Hodowany: Ph.D. Thesis, Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA, 1997

  6. R. Kapoor, S. Nemat-Nasser: Mech. Mater., 1998, vol. 27, pp. 1–12

    Article  Google Scholar 

  7. A.N. Stroh: Proc. R. Soc. London A, 1953, vol. 218, pp. 391–400

    Article  CAS  Google Scholar 

  8. F.R.N. Nabarro: Theory of Crystal Dislocations, Oxford University Press, Oxford, United Kingdom, 1967

    Google Scholar 

  9. J.P. Hirth, J. Lothe: Theory of Dislocations, McGraw-Hill Inc., New York, NY, 1968

    Google Scholar 

  10. J.T. Moore, D. Kuhlman-Wilsdorf: 2nd Int. Conf. on the Strength of Metals and Alloys, American Society of Metals (ASM), Metals Park, OH, 1970, vol. 2, pp. 484–88

    Google Scholar 

  11. D. Kuhlmann-Wilsdorf: Mater. Sci. Eng., 1987, vol. 86, pp. 53–66

    Article  CAS  Google Scholar 

  12. G. Subhash, G. Ravichandran, B.J. Pletka: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1479–87

    Article  CAS  Google Scholar 

  13. D. Macdougall: Exp. Mech., 2000, vol. 40, pp. 298–306

    Article  CAS  Google Scholar 

  14. E. Tenckhoff: ASTM Special Technical Publication (STP) 966, ASTM, Philadelphia, PA, 1988

  15. J.W. Christian and S. Mahajan: Progr. Mater. Sci., 1995, vol. 39, pp. 1–157

  16. G.T. Gray: Twinning in Advanced Materials, Minerals Metals and Materials Society (TMS), Warrendale, PA, 1994, pp. 337–49

  17. K.T. Ramesh: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 927–35

    CAS  Google Scholar 

  18. M.H. Yoo, J.R. Morris, K.M. Ho, S.R. Agnew: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 813–22

    CAS  Google Scholar 

  19. E.J. Rapperport, C.S. Hartley: Trans. TMS-AIME, 1960, vol. 218, pp. 869–76

    Google Scholar 

  20. A. Akhtar: Acta Metall., 1973, vol. 21, pp. 1–11

    Article  Google Scholar 

  21. A. Akhtar: J. Nucl. Mater., 1973, vol. 47, pp. 79–86

    Article  CAS  Google Scholar 

  22. R.J. McCabe, E.K. Cerrata, A. Misra, G.C. Kaschner, C.N. Tomé: Phil. Mag., 2006, vol. 86, pp. 3595–3611

    Article  CAS  Google Scholar 

  23. E. Cerreta, G.T. Gray III: Metall. Mater. Trans. A, 2004, vol. 33A, pp. 1999–2011

    Article  Google Scholar 

  24. A.K. Aiyangar, B.W. Neuberger, P.G. Oberson, S. Ankem: Metall. Mater. Trans. A, 2006, vol. 36A, p. 637

    Google Scholar 

  25. H. Conrad: Progr. Mater. Sci., 1981, vol. 26, pp. 123–403

    Article  CAS  Google Scholar 

  26. S. Nemat-Nasser, W.G. Guo, J.Y. Cheng: Acta Mater., 1999, vol. 47, pp. 3705–20

    Article  CAS  Google Scholar 

  27. M.A. Meyers, O. Vohringer, and V.A. Lubarda: Acta Metall., 2001, vol. 49, pp. 4025–39

  28. G.C. Kaschner, G.T. Gray III: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1997–2003

    Article  CAS  Google Scholar 

  29. M.P. Biget, G. Saada: J. Phys. III France, 1995, vol. 5, pp. 1833–40

    Article  CAS  Google Scholar 

  30. D.O. Hobson: Trans. TMS-AIME, 1968, vol. 242, pp. 1105–10

    Google Scholar 

  31. M.G. Isayenkova and Y.A. Perlovich: Izv. Akad. Nauk SSSR. Metally, 1987, No. 3, pp. 152–55

  32. M.G. Isayenkova, Y.A. Perlovich: Phys. Met. Metall., 1991, vol. 71, pp. 81–86

    Google Scholar 

  33. C.N. Tomé, P.J. Maudlin, R.A. Lebensohn, G.C. Kaschner: Acta Mater., 2001, vol. 49, pp. 3085–96

    Article  Google Scholar 

  34. J. Hodowany, G. Ravichandran, A.J. Rosakis, P. Rosakis: Exp. Mech., 2000, vol. 40, pp. 112–23

    Article  Google Scholar 

  35. Y. Rabin, D. Rittel: Exp. Mech., 2000, vol. 40, pp. 197–202

    Article  Google Scholar 

  36. ATI Wah Chang: Allegheny Technologies, Allegheny, OR, 2005

  37. G.T. Gray III: ASM Handbook, vol. 8, Mechanical Testing and Evaluation, ASM, Materials Park, OH, 2000

  38. D. Rittel: Mech. Mater., 1999, vol. 31, pp. 131–39

    Article  Google Scholar 

  39. Z. Li, J. Lambros: Int. J. Solid. Struct., 2001, vol. 38, pp. 3549–62

    Article  Google Scholar 

  40. Z. Li, J. Lambros: Compos. Appl. Sci. Manuf., 2000, vol. 31A, pp. 537–47

    Article  CAS  Google Scholar 

  41. T.W. Bjerke: Ph.D. Thesis, University of Delaware, Newark, DE, 2002

  42. J.F. Bingert, T.A. Mason, G.C. Kaschner, P.J. Maudlin, G.T. Gray III: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 955–63

    CAS  Google Scholar 

  43. G.C. Kaschner, C.N. Tome, I.J. Beyerlein, S.C. Vogel, D.W. Brown, R.J. McCabe: Acta Mater., 2006, vol. 54, pp. 2887–96

    Article  CAS  Google Scholar 

  44. G.I. Taylor: J. Inst. Met., 1938, vol. 62

  45. C.N. Tomé, R.A. Lebensohn, U.F. Kocks: Acta Metall. Mater., 1991, vol. 39, p. 2667

    Article  Google Scholar 

  46. R.A. Lebensohn, C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24

    Article  CAS  Google Scholar 

  47. M.H. Yoo, J.K. Lee: Phil. Mag. A, 1991, vol. 63, pp. 987–1000

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the United States Department of Energy under Award Nos. DEFG03-02-NA00072 (H.A. Padilla, C.D. Smith, I.M. Robertson, and J. Lambros) and DEFG52-06-NA26150 (A.J. Beaudoin). The microscopy was conducted at the Center for Microanalysis of Materials in the Frederick Seitz Materials Research Laboratory, which is partially supported by the United States Department of Energy under Grant No. DEFG02-91-ER45439. Thanks to Bryan Miller, Jamie Kimberley, and Satya Varadhan for helpful discussions, to Jim Mabon for assistance with the EBSD, and to Carlos Tomé and George Kaschner (Los Alamos National Laboratory) for their collaborations in the modeling and interpretation of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.A. Padilla II.

Additional information

This article is based on a presentation made in the symposium entitled “Dynamic Behavior of Materials,” which occurred during the TMS Annual Meeting and Exhibition, February 25–March 1, 2007 in Orlando, Florida, under the auspices of The Minerals, Metals and Materials Society, TMS Structural Materials Division, and TMS/ASM Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padilla, H., Smith, C., Lambros, J. et al. Effects of Deformation Twinning on Energy Dissipation in High Rate Deformed Zirconium. Metall Mater Trans A 38, 2916–2927 (2007). https://doi.org/10.1007/s11661-007-9365-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9365-5

Keywords

Navigation