Skip to main content
Log in

Numerical study of classical and composite solar walls by TRNSYS

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The laboratory LAMTI has worked for several years on the study and the optimization of the thermal performances of passive solar walls like solar Trombe wall. These components of the buildings envelope have very complex behaviour because they are the seat of various coupled heat transfers modes and are subjected to the random variations of the meteorological parameters. Using the finite difference method (FDM) and starting from experimental results recorded during several years, a simulation model was developed and validated concerning the “composite” Trombe wall. In order to make this work more accessible to the community of the heat engineers, it appears interesting to build a simulation model which can be integrated into the library of elements of the TRNSYS software. A “Type” was thus carried out and the results obtained compared with those of the FDM model. In this work we compare the obtained results with these two numerical ways. The assumptions and the results of simulations are also confronted with those of an existing module in TRNSYS (Type 36) established for the “classical” Trombe wall. The study shows that the models that we developed are very precise and that certain assumptions must be used with a lot of precautions. The advantages of the composite Trombe solar wall compared to the Classical Trombe wall are highlighted for cold and/or cloudy climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

thermal diffusivity (m2/s)

A :

area (m2)

C :

specific heat (J/kg·°C)

C d :

drag coefficient

D :

distance (m)

F e :

emission factor

g :

gravitational acceleration (m/s2)

Gr :

Grashof number

h e :

convection coefficient (W/m2·°C)

h r :

radiation coefficient (W/m2·°C)

H :

height (m)

H o :

vertical distance between two orifices (m)

I g :

global solar radiation flux density (W/m2)

I h :

solar radiation flux density on a horizontal surface (W/m2)

I d :

diffuse solar radiation flux density (W/m2)

L :

width (m)

m :

air mass flow rate

Nu :

Nusselt number

Pr :

Prandtl number

Q :

thermal energy (J)

R :

thermal resistance (m2·°C/W)

Ra :

Rayleigh number

t :

time (s)

T :

temperature (°C)

T abs :

temperature (K)

V :

fluid velocity (m/s)

x, z :

Cartesian coordinates

X :

thickness (m)

α :

absorptivity to the solar flux

β :

thermal expansion coefficient (K−1)

ɛ :

emissivity

ϕ :

flux density (W/m2)

Φ :

heat flux (KJ/h)

λ :

thermal conductivity (W/m·°C)

μ :

dynamic viscosity (kg/m·s)

ρ :

density (kg/m3)

σ :

Stefan-Boltzmann constant (5.674×10−8 W/m2·K4)

τ :

transmissivity

ζ :

sum of load loss coefficients

abs :

absolute temperature

am :

ambiance

c :

convection

e :

emission

e :

exterior

env :

environment

f :

fluid

g :

glazing

gy :

gypsum

i :

insulating wall

int :

interior (dwelling)

m :

massive wall

o :

orifice

r :

radiation

s :

solar

sf :

surface

References

  1. ZRIKEM Z. and BILGEN E.: Theoretical study of a compsoite Trombe-Michel wall solar collector system, Solar Energy, Vol.39, No.5, pp. 409–419, (1987).

    Article  Google Scholar 

  2. ZALEWSKI L.: Etude thermique expérimentale et simulation numérique d’un mur solaire composite — Optimisation des performances énergétiques, Thèse, L.A.M.H. à l’Université d’Artois de Béthune, (1996).

  3. ZALEWSKI L., LASSUE S., DUTHOIT B. and BUTEZ M.: Study of solar walls-Validating a numerical simulation model, Building and Environment, Vol.37/1 pp. 109–121, (2002).

    Google Scholar 

  4. Solar Laboratory of Energy (USA): Manuals of TRNSYS, University of Wisconsin-Madison, USA, (1994).

  5. ZALEWSKI L., CHANTANT M., LASSUE S., DUTHOIT B.: Experimental thermal study of a solar wall of composite type, Energy and Buildings, Vol.25 pp. 7–18, (1997).

    Article  Google Scholar 

  6. ONG K.S.: A mathematical model of a solar chimney, Renewable Energy. Mgmt, Vol.28, pp. 1047–1060, (2003).

    Article  Google Scholar 

  7. SFEIR A. A. and GUARRACINO G.: Ingénierie des systèmes solaires, applications à l’habitat, Technique et Documentation, (1981).

  8. KREIDER J. F. and KREITH F.: Solar energy handbook, Mc Graw-Hill Series in Modern Structures, New York, USA, (1981).

  9. CHOUARD P., MICHEL Henri and SIMON M. F.: Bilan thermique d’une maison solaire, Editions Eyrolles, Paris, (1977).

    Google Scholar 

  10. IIEL’CIK I.E.: Coefficients de pertes de charge singulières et de pertes de charge par frottement, Editions Eyrolles, (1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jibao Shen Doctor, Stéphane Lassue or Laurent Zalewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J., Lassue, S., Zalewski, L. et al. Numerical study of classical and composite solar walls by TRNSYS. J. of Therm. Sci. 16, 46–55 (2007). https://doi.org/10.1007/s11630-007-0046-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-007-0046-x

Keywords

Navigation