Skip to main content
Log in

Biosynthesis of Dibenzyl Trisulfide (DTS) from somatic embryos and rhizogenous/embryogenic callus derived from Guinea hen weed (Petiveria alliacea L.) leaf explants

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

A procedure for producing somatic embryos enriched with dibenzyl trisulfide (DTS) using a hormone-dependent culture system is reported for Petiveria alliacea L. (Guinea hen weed). Leaf explants were cultured on a Murashige and Skoog medium supplemented with a range of naphthaleneacetic acid (NAA) concentrations and a fixed concentration of benzyladenine (BAP) at 11.0 μM and sucrose or glucose at 30 g l−1. Leaf explants cultured on all media types started to form callus at the cut surfaces of the discs 10–14 d after initiation. The type of sugar used influenced average fresh weight, the propensity to form roots, as well as the embryogenic response. The highest mean fresh weight (337.7 ± 26.18 mg) and mean root number (23.7 ± 1.69) was produced on media enriched with sucrose and supplemented with 53.7 μM NAA and 11.0 μM BAP. An ethanol extract of rhizogenic/embryogenic callus or somatic embryos was subjected to high-performance liquid chromatography analysis, which revealed the presence of DTS in both extracts. UV spectral analysis and the use of standard quantitation procedures showed that the quantity of DTS in the somatic embryo extract, at 0.16% (w/v), was approximately 30-fold higher than in rhizogenic/embryogenic callus (0.0055% w/v) of similar fresh weight. These results indicate that it is possible to biosynthesize approximately 6 mg of natural DTS from 3,808 mg of fresh somatic embryos within 10 wk from less than three leaf explants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Anonymous, Treating livestock with medicinal plants (Petiveria alliacea): Beneficial or toxic? http://www.ansci.cornell.edu/plants/medicinal/anamu.html (undated) down loaded 11/10/2003. Last updated 10/04/2001.

  • Barnes J. A.; Williams L. A. D.; Adesiyun A. A. Benzyl trisulphide from Petiveria alliacea inhibits the growth of Staphylococcus aureus (abstract). The University of the West Indies, St. Augustine Campus, Partnerships and Possibilities, Research and Graduate Studies 5: 30; 2003.

    Google Scholar 

  • Benevides P. J. C.; Young M. C. M.; Giesbrecht A. M.; Roque N. F.; Bolzani V.; Da S. Antifungal polysulphides from Petiveria alliacea L.. Phytochemistry 57: 743–747; 2003.

    Article  Google Scholar 

  • Choffe K. L.; Victor J. M. R.; Murch S. J.; Saxena P. K. In vitro regeneration of Echinacea purpurea L.: Direct somatic embryogenesis and indirect shoot organogenesis in petiole culture. In Vitro Cell. Dev. Biol-Plant. 00: 1–7; 2000.

    Google Scholar 

  • Daniell, H. Chloroplast genetic engineering for improved agronomic traits and molecular farming, using various selection systems. (Abstract P-11, World Congress on In Vitro Biology). In Vitro Cell. Dev. Biol. 40: 18–A; 2004.

    Google Scholar 

  • Dykstra J. M A manual of applied techniques for biological electron microscopy. Plenum, New York, NY, pp 12–18; 1993.

    Google Scholar 

  • Ferrie A. M. R.; Keller W. A.; Plamer C. E. Tissue culture methods to improve herbs, spices and nutracuetical plants (abstract P-33, World Congress on In Vitro Biology). In Vitro Cell. Dev. Biol. 2004 40: 23–A.

    Article  CAS  Google Scholar 

  • Honeychurch P. N. Caribbean wild plants and their uses. Macmillan, London; 1986: 70pp.

    Google Scholar 

  • Jayanthi M.; Mandel K. P. Plant regeneration through somatic embryogenesis and RAPD analysis of regenerated plants in Tylophora indica (Burm.F. Merrill). In Vitro Cell. Dev. Biol. Plant 37: 576–580; 2001.

    Article  CAS  Google Scholar 

  • Johnson, L. Novel crucurbitacins from Fevillea cordifolia L., and natural pesticides from Petiveria alliacea L. Ph.D. thesis, Department of Chemistry, Faculty of Natural Sciences, Mona, UWI; 1991: pp. 230–250.

  • Johnson L.; Williams L. D. A.; Roberts E. V. An insecticidal and acaricidal polysulphide metabolite from the roots of Petiveria allliacea. Pest. Sci. 503: 228–232; 1997.

    Article  CAS  Google Scholar 

  • Kassem M. A.; Jacquin A. Somatic embryogenesis, rhizogenesis and morphinan alkaloids production in two species of opium poppy. J. Biomed. Biotechnol. 12: 70–78; 2001.

    Article  PubMed  Google Scholar 

  • Lowe H.; Payne-Jackson A.; Beckstorm-Sternberg S. M.; Duke J. Jamaica’s Ethno-medicine. Its potential in the healthcare system. Pelican, Kingston 7, Jamaica, pp 58–60, 173–174; 2001.

    Google Scholar 

  • Mitchell S. A.; Ahmad M. H. A Review of medicinal plant research at The University of the West Indies, Jamaica, 1948–2001. West Indian Med. J. 554: 243–269; 2006a.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell S. A.; Ahmad M. H. Protecting our medicinal plant heritage: The making of a new national treasure. Jam. J. 293: 28–33; 2006b.

    Google Scholar 

  • Mitchell S. A.; Asemota H. N.; Ahmad M. H. Effects of explant source, culture medium strength, and growth regulators on the in vitro propagation of three Jamaican yams (Dioscorea cayenensis, D. trifida and D. rotundata). J. Sci. Food Agric. 67: 173–180; 1995.

    Article  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Pinto G.; Santos C.; Neves L.; Araǔjo C. Somatic embryogenesis and plant regeneration in Eucalyptus globulus Labill. Plant Cell Rep. 21: 208–213; 2002.

    Article  CAS  Google Scholar 

  • Rösner H.; Williams L. A. D.; Jung A.; Kraus W. Disassembly of microtubules and inhibition of neurite outgrowth, nueroblastoma cell proliferation, and MAP kinase tyrosine dephosphorylation by dibenzyl trisulphide. Biochim. Biophys. Acta 1540: 166–177; 2001.

    Article  PubMed  Google Scholar 

  • Seaforth C. E. Folk healing plants used in the Caribbean. Hem Enterprises, Trincity, Trinidad; 1998.

    Google Scholar 

  • Webster, S. A.; Mitchell, S. A.; Ahmad, M. H. A novel surface sterilization method for reducing microbial contamination on field-grown medicinal explants intended for in vitro culture. In; Proceedings of the 17th Annual National Conference on Science and Technology (Abstract), Scientific Research Council, Jamaica, W.I., 30; 2003.

  • Webster S. A.; Mitchell S. A; Ahmad M. H. Somatic embryogenic response of Petiveria alliacea leaf explant derived-callus to sucrose and glucose enriched media supplemented with NAA and BAP. Abstract Issue—World Congress on In Vitro Biology. In Vitro Cell and Dev. Biol. 40: 33; 2004.

    Google Scholar 

  • Williams L. A. D.; Rösner H.; Moller W.; Kraus W. Anti-proliferation/cytotoxic action of dibenzyl trisulphide, a secondary metabolite of Petiveria alliacea. Jam. J. Sci. Technol. 15: 54–60; 2004a.

    Google Scholar 

  • Williams L. A. D.; Rösner H.; Moller W.; Conrad J.; Nkurunziza J. P.; Kraus W. In vitro anti-proliferation/cytotoxic activity of sixty natural products on the human SH-SY5Y neuroblastoma cells with specific reference to dibenzyl trisulphide. West Indian Med J. 534: 208; 2004b.

    PubMed  CAS  Google Scholar 

  • Williams L. A. D.; The T. L.; Gardener M. T.; Fletcher C. K.; Naravane A.; Gibbs N.; Fleishhacker R. Immunomodulatory activities of Peteveria alliacea L.. Phytother. Res. 11: 251–253; 1997.

    Article  Google Scholar 

  • Williams L. A. D.; Vasquez E.; Klaiber I.; Kraus W.; Rösner H. A sulfonic anhydride derivative from dibenzyl trisulphide with agro-chemical activities. Chemosphere 51: 701–706; 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support received from Jamaica Broilers Group of Companies and the Office of Graduate Studies and Research at The University of the West Indies is gratefully acknowledged. The authors are also grateful to Messers Dennis Bailey and Michael Henry (UWI) for material and technical assistance during the extraction process and to Dr. Paul Maragh for allowing us to use the instruments in the lab he supervises. We are also grateful to the College of Agriculture, Science and Education for allowing the lead author time off from work to undertake this research work at The Biotechnology Centre, UWI Mona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Mitchell.

Additional information

Editor: Dudits Denes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webster, S.A., Mitchell, S.A., Gallimore, W.A. et al. Biosynthesis of Dibenzyl Trisulfide (DTS) from somatic embryos and rhizogenous/embryogenic callus derived from Guinea hen weed (Petiveria alliacea L.) leaf explants. In Vitro Cell.Dev.Biol.-Plant 44, 112–118 (2008). https://doi.org/10.1007/s11627-008-9125-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9125-2

Keywords

Navigation