Skip to main content
Log in

Modeling the Effects of Space Structure and Combination Therapies on Phenotypic Heterogeneity and Drug Resistance in Solid Tumors

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Histopathological evidence supports the idea that the emergence of phenotypic heterogeneity and resistance to cytotoxic drugs can be considered as a process of selection in tumor cell populations. In this framework, can we explain intra-tumor heterogeneity in terms of selection driven by the local cell environment? Can we overcome the emergence of resistance and favor the eradication of cancer cells by using combination therapies? Bearing these questions in mind, we develop a model describing cell dynamics inside a tumor spheroid under the effects of cytotoxic and cytostatic drugs. Cancer cells are assumed to be structured as a population by two real variables standing for space position and the expression level of a phenotype of resistance to cytotoxic drugs. The model takes explicitly into account the dynamics of resources and anticancer drugs as well as their interactions with the cell population under treatment. We analyze the effects of space structure and combination therapies on phenotypic heterogeneity and chemotherapeutic resistance. Furthermore, we study the efficacy of combined therapy protocols based on constant infusion and bang–bang delivery of cytotoxic and cytostatic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arnold A, Desvillettes L, Prévost C (2012) Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Commun Pure Appl Anal 11:83–96

    MathSciNet  MATH  Google Scholar 

  • Beketic-Oreskovic L, Durán GE, Chen G, Dumontet C, Sikic BI (1995) Decreased mutation rate for cellular resistance to doxorubicin and suppression of MDR1 gene activation by the cyclosporin PSC 833. J Natl Cancer Inst 87:1593–1602

    Article  Google Scholar 

  • Beyer I, van Rensburg R, Strauss R, Li Z, Wang H, Persson J, Yumul R, Feng Q, Song H, Bartek J et al (2011) Epithelial junction opener JO-1 improves monoclonal antibody therapy of cancer. Cancer Res 71:7080–7090

    Article  Google Scholar 

  • Beyer I, Cao H, Persson J, Song H, Richter M, Feng Q, Yumul R, van Rensburg R, Li Z, Berenson R et al (2012) Coadministration of epithelial junction opener JO-1 improves the efficacy and safety of chemotherapeutic drugs. Clin Cancer Res 18:3340–3351

    Article  Google Scholar 

  • Bouin E, Calvez V, Meunier N, Mirrahimi S, Perthame B, Raoul G, Voituriez R (2012) Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration. Comptes Rendus Math 350:761–766

    Article  MathSciNet  MATH  Google Scholar 

  • Brodie ED III (1992) Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution 46:1284–1298

  • Busch TM, Xing X, Yu G, Yodh A, Wileyto EP, Wang H-W, Durduran T, Zhu TC, Wang KK-H (2009) Fluence rate-dependent intratumor heterogeneity in physiologic and cytotoxic responses to Photofrin photodynamic therapy. Photochem Photobiol Sci 8:1683–1693

    Article  Google Scholar 

  • Byrne H (2013) Continuum models of avascular tumor growth, in mathematics and life sciences. Antoniouk AV, Melnik RVN (eds) De Gruyter, ch. 12.1, pp 279–312

  • Carver K, Ming X, Juliano RL (2014) Multicellular tumor spheroids as a model for assessing delivery of oligonucleotides in three dimensions. Mol Ther Nucleic Acids 3:e153

    Article  Google Scholar 

  • Corbett T, Griswold D, Roberts B, Peckham J, Schabel F (1975) Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure. Cancer Res 35:2434–2439

    Google Scholar 

  • de Bruin EC, Taylor TB, Swanton C (2013) Intra-tumor heterogeneity: lessons from microbial evolution and clinical implications. Genome Med 5:101

    Article  Google Scholar 

  • de Pillis LG, Radunskaya AE, Wiseman CL (2005) A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res 65:7950–7958

    Google Scholar 

  • de Pillis L, Renee Fister K, Gu W, Collins C, Daub M, Gross D, Moore J, Preskill B (2009) Mathematical model creation for cancer chemo-immunotherapy. Comput Math Methods Med 10:165–184

    Article  MathSciNet  MATH  Google Scholar 

  • De Pillis L, Savage H, Radunskaya A (2013) Mathematical model of colorectal cancer with monoclonal antibody treatments, arXiv preprint, arXiv:1312.3023

  • Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, McLellan MD et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481:506–510

    Article  Google Scholar 

  • Foo J, Chmielecki J, Pao W, Michor F (2012) Effects of pharmacokinetic processes and varied dosing schedules on the dynamics of acquired resistance to erlotinib in EGFR-mutant lung cancer. J Thorac Oncol 7:1583–1593

    Article  Google Scholar 

  • Gatenby R (2009) A change of strategy in the war on cancer. Nature 459:508–509

    Article  Google Scholar 

  • Gatenby R, Silva A, Gillies R, Frieden B (2009) Adaptive therapy. Cancer Res 69:4894–4903

    Article  Google Scholar 

  • Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  Google Scholar 

  • Goldie J, Coldman A (1998) Drug resistance in cancer: mechanisms and models. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gottesman M (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    Article  Google Scholar 

  • Grothey A (2006) Defining the role of panitumumab in colorectal cancer. Community Oncol 3:6–10

    Google Scholar 

  • Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644

    Article  Google Scholar 

  • Inukai M, Toyooka S, Ito S, Asano H, Ichihara S, Soh J, Suehisa H, Ouchida M, Aoe K, Aoe M et al (2006) Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res 66:7854–7858

    Article  Google Scholar 

  • Jackson TL, Byrne HM (2002) A mechanical model of tumor encapsulation and transcapsular spread. Math Biosci 180:307–328

    Article  MathSciNet  MATH  Google Scholar 

  • Kimmel M, Świerniak A (2006) Control theory approach to cancer chemotherapy: benefiting from phase dependence and overcoming drug resistance. In: Friedman A (ed)Tutorials in mathematical biosciences III, vol 1872 of lecture notes in mathematics. Springer, Berlin, pp 185–221

  • Komarova N, Wodarz D (2005) Drug resistance in cancer: principles of emergence and prevention. Proc Natl Acad Sci USA 102:9714–9719

    Article  Google Scholar 

  • Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, Sougnez C, Stewart C, Sivachenko A, Wang L et al (2013) Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152:714–726

    Article  Google Scholar 

  • Laurent J, Frongia C, Cazales M, Mondesert O, Ducommun B, Lobjois V (2013) Multicellular tumor spheroid models to explore cell cycle checkpoints in 3d. BMC Cancer 13:1–12

    Article  Google Scholar 

  • Lavi O, Greene JM, Levy D, Gottesman MM (2013) The role of cell density and intratumoral heterogeneity in multidrug resistance. Cancer Res 73:7168–7175

    Article  Google Scholar 

  • Łędżewicz U, Schättler H (2002) Optimal bang–bang controls for a two-compartment model in cancer chemotherapy. J Opt Theory Appl 114:609–637

    Article  MATH  Google Scholar 

  • Lorz A, Mirrahimi S, Perthame B (2011) Dirac mass dynamics in a multidimensional nonlocal parabolic equation. Commun Part Differ Equ 36:1071–1098

    Article  MathSciNet  MATH  Google Scholar 

  • Lorz A, Lorenzi T, Hochberg ME, Clairambault J, Perthame B (2013) Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. Esaim Math Model Numer Anal 47:377–399

    Article  MathSciNet  MATH  Google Scholar 

  • Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511

    Google Scholar 

  • Merlo L, Pepper J, Reid B, Maley C (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6:924–935

    Article  Google Scholar 

  • Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592

    Article  Google Scholar 

  • Mirrahimi S, Perthame B (2014) Asymptotic analysis of a selection model with space (preprint)

  • Mirrahimi S, Raoul G (2013) Dynamics of sexual populations structured by a space variable and a phenotypical trait. Theor Popul Biol 84:87–103

    Article  MATH  Google Scholar 

  • Mitchison T (2012) The proliferation rate paradox in antimitotic chemotherapy. Mol Biol Cell 23:1–6

    Article  Google Scholar 

  • Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461

    Article  Google Scholar 

  • Perthame B, Barles G (2008) Dirac concentrations in Lotka–Volterra parabolic PDEs. Indiana Univ Math J 57:3275–3301

    Article  MathSciNet  MATH  Google Scholar 

  • Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69–72

    Article  Google Scholar 

  • Scotto K (2003) Transcriptional regulation of abc drug transporters. Oncogene 22:7496–7511

    Article  Google Scholar 

  • Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA, Wong K-K, Brandstetter K, Wittner B, Ramaswamy S, Classon M, Settleman J (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80

    Article  Google Scholar 

  • Silva A, Gatenby R (2010) A theoretical quantitative model for evolution of cancer chemotherapy resistance. Biol Direct 22:5–25

    Google Scholar 

  • Simon R, Norton L (2006) The Norton–Simon hypothesis: designing more effective and less toxic chemotherapeutic regimens. Nat Clin Pract Oncol 3:406–407

    Article  Google Scholar 

  • Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184

    Article  Google Scholar 

  • Swanton C (2010) Intratumor heterogeneity: evolution through space and time. Cancer Res 72:4875–4882

    Article  Google Scholar 

  • Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    Article  Google Scholar 

  • Tabernero J, Van Cutsem E, Díaz-Rubio E, Cervantes A, Humblet Y, André T, Van Laethem J-L, Soulié P, Casado E, Verslype C, Valera JS, Tortora G, Ciardiello F, Kisker O, de Gramont A (2007) Phase II trial of cetuximab in combination with fluorouracil, leucovorin, and oxaliplatin in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 25:5225–5232

    Article  Google Scholar 

  • Tomasetti C, Levy D (2010a) Drug resistance always depends on the turnover rate. In: Herold K, Vossoughi J, Bentley W (eds) SBEC 2010, IFMBE proceedings, vol 32. Springer, Berlin, pp 552–555

  • Tomasetti C, Levy D (2010b) An elementary approach to modeling drug resistance in cancer. Math Biosci Eng 7:905–918

  • Tsai C-J, Nussinov R (2013) The molecular basis of targeting protein kinases in cancer therapeutics. In: Seminars in cancer biology, vol 23. Elsevier, Amsterdam, pp 235–242

  • Vaupel P, Hockel M (2000) Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. Int J Oncol 17:869–948

    Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    Google Scholar 

  • Weinberg R (2007) The biology of cancer. Garland Science, London

  • Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68:3077–3080

    Article  Google Scholar 

  • Ye L-C, Liu T-S, Ren L, Wei Y, Zhu D-X, Zai S-Y, Ye Q-H, Yu Y, Xu B, Qin X-Y, Xu J (2013) Randomized controlled trial of cetuximab plus chemotherapy for patients with KRAS wild-type unresectable colorectal liver-limited metastases. J Clin Oncol 31:1931–1938

    Article  Google Scholar 

  • Yu P, Mustata M, Peng L, Turek JJ, Melloch MR, French PM, Nolte DD (2004) Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids. Appl Opt 43:4862–4873

    Article  Google Scholar 

  • Zhou DC, Ramond S, Viguié F, Faussat AM, Zittoun R, Marie JP (1996) Sequential emergence of MRP- and MDR1-gene over-expression as well as MDR1-gene translocation in homoharringtonine-selected K562 human leukemia cell lines. Int J Cancer 65:365–371

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to this paper was (partially) funded by the French “ANR blanche” Project Kibord: ANR-13-BS01-0004. T.L. was supported by the Fondation Sciences Mathématiques de Paris and by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-10-LABX-0098), and by the FIRB Project—RBID08PP3J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Lorz.

Additional information

Alexander Lorz and Tommaso Lorenzi: These primary authors contributed equally to this article.

Appendices

Appendix 1: Qualitative Mathematical Justification for Phenotypic Selection

From a mathematical standpoint, using the considerations drawn in Lorz et al. (2011), Mirrahimi and Perthame (2014) and Perthame and Barles (2008), the long-term dynamics of the concentration points \(X(t,r)\) can be formally characterized by evaluating

$$\begin{aligned} \lim _{t \rightarrow \infty } R\big (x=X(t,r),\rho (t,r),c_{1,2}(t,r),s(t,r)\big ) = 0. \end{aligned}$$

In order to verify it numerically, we write the following identity

$$\begin{aligned} R\big (X(t,r),\rho (t,r),c_{1,2}(t,r),s(t,r)\big ) = 0, \end{aligned}$$

which implies, due to the definitions of the functions \(p\) and \(\mu _1\) provided in Sect. 3,

$$\begin{aligned} X(t,r)&= \frac{1+\mu _2 c_2(t,r)}{a_2 s(t,r) - b_2 c_1(t,r) [1+\mu _2 c_2(t,r)]} \bigg [ \frac{s(t,r)}{1+\mu _2 c_2(t,r)}(a_1 + a_2) \\&-\, d \rho (t,r) - (b_1 + b_2) c_1(t,r) \bigg ]. \end{aligned}$$

Figure 12 shows that the curves \(X(t,r)\) obtained from the formula above for \(t\) equal to the final time of simulations are in good agreement with the positions of the maximum points \(x_M(t,r)\) of \(n(t,r,x)/\rho (t,r)\) at the same time instant.

Fig. 12
figure 12

Qualitative mathematical justification for phenotypic selection. Plots of \(X(t,r)\) (solid lines) and positions of the maximum points \(x_M(t,r)\) of \(n(t,r,x)/\rho (t,r)\) (\(\cdot \)) for \(C_{1,2}(\cdot ) = 0\) and \(t=50\) (left panel); \(C_1(\cdot ) = 0, C_2(\cdot ) = C_2 > 0\) and \(t=200\) (center panel); \(C_1(\cdot ) = C_1 > 0, C_2(\cdot ) = 0\) and \(t=120\) (right panel). The unit of time is days

Appendix 2: Values of the Parameters

Figure 2: \(C^0=0.005, \varepsilon =0.005, S_1 = 12, \alpha _s=0.08, \alpha _{c_1}=0.08, \alpha _{c_2}=0.2, \gamma _s=1, \gamma _{c_1}=1, \gamma _{c_2}=1, d=14.48\); (a) , \(C_1(\cdot ) = 0, C_2(\cdot ) = 0, \mu _2=800\); (b) \(C_1(\cdot ) = 0, C_2(\cdot ) = 3, \mu _2=8\); (c) \(C_1(\cdot ) = 3, C_2(\cdot ) = 0, \mu _2=800\).

Figure 3: \(C^0=0.005, \varepsilon =0.005, S_1 = 12, \alpha _s=0.08, \alpha _{c_1}=0.08, \alpha _{c_2}=0.2, \gamma _s=1, \gamma _{c_1}=1, \gamma _{c_2}=1, d=14.48\); (left) \(C_1(\cdot ) = 3, C_2(\cdot ) = 0, \mu _2=800\); (right) \(C_1(\cdot ) := 0, C_2(\cdot ) := 3, \mu _2=8\).

Figure 4: \(C^0=0.005, \varepsilon =0.005, S_1 = 12, \alpha _s=0.08, \alpha _{c_1}=0.08, \alpha _{c_2}=0.2, \gamma _s=1, \gamma _{c_1}=1, \gamma _{c_2}=1, d=14.48, \mu _2=8, C_1 = 4, C_2(\cdot ) = 0\).

Figure 5: \(C^0=0.05, \varepsilon =0.025, S_1 = 1.6, \alpha _s=0.08, \alpha _{c_1}=0.08, \alpha _{c_2}=0.2, \gamma _s=1, \gamma _{c_1}=1, \gamma _{c_2}=1, d=14.48, \mu _2=800, C_a = 2.4, C_b = 3.6, C_d = 6, C_2(\cdot ) = 0\).

Figure 7: \(C^0=0.005, \varepsilon =0.005, S_1 = 12, \alpha _s=0.08, \alpha _{c_1}=0.08, \alpha _{c_2}=0.2, \gamma _s=1, \gamma _{c_1}=1, \gamma _{c_2}=1, d=14.48, \mu _2=800, C_1(\cdot ) = 0, C_2(\cdot ) = 0\).

Figures 8 and 9: \(C^0=0.005, \varepsilon =0.005, S_1 = 12, \alpha _s=0.08, \alpha _{c_1}=0.08, \alpha _{c_2}=0.2, =1, \gamma _{c_1}=1, \gamma _{c_2}=1, d=14.48, \mu _2=800, C_a = 4, C_b = 15\).

Figure 10: \(C^0=0.005, \varepsilon =0.005, S_1 = 12, \alpha _s=0.08, \alpha _{c_1}=0.08, \alpha _{c_2}=0.2, \gamma _s=1, \gamma _{c_1}=1, \gamma _{c_2}=1, d=14.48, \mu _2=800, C_a = 0.24, C_b = 0.90\).

Figure 11: \(C^0=0.005, \varepsilon =0.005, S_1 = 12, \alpha _s=0.08, \alpha _{c_1}=0.08, \alpha _{c_2}=0.2, \gamma _s=1, \gamma _{c_1}=1, \gamma _{c_2}=1, d=14.48, \mu _2=800, C_d = 0.24, C_e = 0.90\).

Figure 12: \(C^0=0.005, \varepsilon =0.005, S_1 = 12, \alpha _s=0.08, \alpha _{c_1}=0.08, \alpha _{c_2}=0.2, \gamma _s=1, \gamma _{c_1}=1, \gamma _{c_2}=1, d=14.48\); (left) \(C_1(\cdot ) = 0, C_2(\cdot ) = 0, \mu _2=800\); (center) \(C_1(\cdot ) = 0, C_2(\cdot ) = 3, \mu _2=8\); (right) \(C_1(\cdot ) = 3, C_2(\cdot ) = 0, \mu _2=800\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorz, A., Lorenzi, T., Clairambault, J. et al. Modeling the Effects of Space Structure and Combination Therapies on Phenotypic Heterogeneity and Drug Resistance in Solid Tumors. Bull Math Biol 77, 1–22 (2015). https://doi.org/10.1007/s11538-014-0046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-0046-4

Keywords

Navigation