Skip to main content
Log in

Clinical activity of mammalian target of rapamycin inhibitors in solid tumors

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

The phosphatidylinositol 3-kinase (PI3K)–Akt–mammalian target of rapamycin (mTOR) pathway is vital for cell metabolism, growth, and proliferation. mTOR is frequently upregulated in many tumor types and hence has become an important target in cancer treatment. Sirolimus and its derivatives (rapalogs) interact with the intracellular receptor FK506 binding protein 12 (FKBP12), forming a complex with high affinity for mTOR and thus disrupting its activity. Rapalogs are being evaluated extensively in cancer patients with different formulations and schedules. Significant clinical activity has led to their approval for the treatment of kidney cancer, mantle cell lymphoma, and subependymal giant cell astrocytoma; however, despite increasing knowledge about cancer cell biology, their activity in other malignancies is unclear. Further research is needed to identify optimal dosage, administration and targeted combination as well as the subset of patients likely to respond to mTOR/PI3K inhibition. This review focuses on a discussion of the pathway, its implications in cancer biology and results of clinical trials of rapalogs alone or in combination, organizing them by common malignancy type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  2. Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550–562

    Article  PubMed  CAS  Google Scholar 

  3. Raman M, Cobb MH (2003) MAP kinase modules: many roads home. Curr Biol 13(22):R886–R888

    Article  PubMed  CAS  Google Scholar 

  4. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science (New York, NY) 296(5573):1655–1657

    Article  CAS  Google Scholar 

  5. Kurosu H, Maehama T, Okada T, Yamamoto T, Hoshino S, Fukui Y, Ui M, Hazeki O, Katada T (1997) Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110beta is synergistically activated by the betagamma subunits of G proteins and phosphotyrosyl peptide. J Biol Chem 272(39):24252–24256

    Article  PubMed  CAS  Google Scholar 

  6. Roche S, Downward J, Raynal P, Courtneidge SA (1998) A function for phosphatidylinositol 3-kinase beta (p85alpha-p110beta) in fibroblasts during mitogenesis: requirement for insulin- and lysophosphatidic acid-mediated signal transduction. Mol Cell Biol 18(12):7119–7129

    PubMed  CAS  Google Scholar 

  7. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Ann Rev Cell Dev Biol 17:615–675

    Article  CAS  Google Scholar 

  8. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat rev 7(8):606–619

    Article  CAS  Google Scholar 

  9. Lane HA, Breuleux M (2009) Optimal targeting of the mTORC1 kinase in human cancer. Curr Opin Cell Biol 21(2):219–229

    Article  PubMed  CAS  Google Scholar 

  10. Zhao L, Vogt PK (2008) Class I PI3K in oncogenic cellular transformation. Oncogene 27(41):5486–5496

    Article  PubMed  CAS  Google Scholar 

  11. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science (New York, NY) 307(5712):1098–1101

    Article  CAS  Google Scholar 

  12. Staal SP (1987) Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Nat Acad Sci USA 84(14):5034–5037

    Article  PubMed  CAS  Google Scholar 

  13. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science (New York, NY) 275(5300):661–665

    Article  CAS  Google Scholar 

  14. Richmond A (2002) Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol 2(9):664–674

    Article  PubMed  CAS  Google Scholar 

  15. Bueso-Ramos CE, Manshouri T, Haidar MA, Yang Y, McCown P, Ordonez N, Glassman A, Sneige N, Albitar M (1996) Abnormal expression of MDM-2 in breast carcinomas. Breast Cancer Res Treat 37(2):179–188

    Article  PubMed  CAS  Google Scholar 

  16. Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441(7092):424–430

    Article  PubMed  CAS  Google Scholar 

  17. Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB (2001) Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 21(17):5899–5912

    Article  PubMed  CAS  Google Scholar 

  18. Plas DR, Talapatra S, Edinger AL, Rathmell JC, Thompson CB (2001) Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J Biol Chem 276(15):12041–12048

    Article  PubMed  CAS  Google Scholar 

  19. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY) 324(5930):1029–1033

    Article  CAS  Google Scholar 

  20. Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL, Thomas G (2003) Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11(6):1457–1466

    Article  PubMed  CAS  Google Scholar 

  21. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13(15):1259–1268

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5(6):578–581

    Article  PubMed  CAS  Google Scholar 

  23. Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes & Dev 17(15):1829–1834

    Article  CAS  Google Scholar 

  24. Dancey J (2010) mTOR signaling and drug development in cancer. Nat Rev Clin Oncol 7(4):209–219

    Article  PubMed  CAS  Google Scholar 

  25. Rubio-Viqueira B, Hidalgo M (2006) Targeting mTOR for cancer treatment. Adv Exp Med Biol 587:309–327

    Article  PubMed  CAS  Google Scholar 

  26. Rini BI (2008) Temsirolimus, an inhibitor of mammalian target of rapamycin. Clin Cancer Res 14(5):1286–1290

    Article  PubMed  CAS  Google Scholar 

  27. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ (2001) p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Nat Acad Sci USA 98(17):9666–9670

    Article  PubMed  CAS  Google Scholar 

  28. de Groot RP, Ballou LM, Sassone-Corsi P (1994) Positive regulation of the cAMP-responsive activator CREM by the p70 S6 kinase: an alternative route to mitogen-induced gene expression. Cell 79(1):81–91

    Article  PubMed  Google Scholar 

  29. Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG (2001) Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 20(16):4370–4379

    Article  PubMed  CAS  Google Scholar 

  30. Sonenberg N, Gingras AC (1998) The mRNA 5′ cap-binding protein eIF4E and control of cell growth. Curr Op Cell Biol 10(2):268–275

    Article  PubMed  CAS  Google Scholar 

  31. Di Como CJ, Arndt KT (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10(15):1904–1916

    Article  PubMed  Google Scholar 

  32. Matthew EM, Hart LS, Astrinidis A, Navaraj A, Dolloff NG, Dicker DT, Henske EP, El-Deiry WS (2009) The p53 target Plk2 interacts with TSC proteins impacting mTOR signaling, tumor growth and chemosensitivity under hypoxic conditions. Cell Cycle (Georgetown, Texas) 8(24):4168–4175

    Article  CAS  Google Scholar 

  33. Johnson MD, O’Connell M, Vito F, Bakos RS (2009) Increased STAT-3 and synchronous activation of Raf-1-MEK-1-MAPK, and phosphatidylinositol 3-Kinase-Akt-mTOR pathways in atypical and anaplastic meningiomas. J Neuro-Oncol 92(2):129–136

    Article  CAS  Google Scholar 

  34. Copp J, Manning G, Hunter T (2009) TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res 69(5):1821–1827

    Article  PubMed  CAS  Google Scholar 

  35. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302

    Article  PubMed  CAS  Google Scholar 

  36. Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657

    Article  PubMed  CAS  Google Scholar 

  37. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10(1):151–162

    Article  PubMed  CAS  Google Scholar 

  38. Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412(2):179–190

    Article  PubMed  CAS  Google Scholar 

  39. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW (2008) Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22(2):239–251

    Article  PubMed  CAS  Google Scholar 

  40. Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, Zwartkruis FJ, Thomas G (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Nat Acad Sci USA 102(40):14238–14243

    Article  PubMed  CAS  Google Scholar 

  41. Byfield MP, Murray JT, Backer JM (2005) hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 280(38):33076–33082

    Article  PubMed  CAS  Google Scholar 

  42. Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14(18):1650–1656

    Article  PubMed  CAS  Google Scholar 

  43. Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM (1985) Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315(6016):239–242

    Article  PubMed  CAS  Google Scholar 

  44. Sugimoto Y, Whitman M, Cantley LC, Erikson RL (1984) Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proc Nat Acad Sci USA 81(7):2117–2121

    Article  PubMed  CAS  Google Scholar 

  45. Chang HW, Aoki M, Fruman D, Auger KR, Bellacosa A, Tsichlis PN, Cantley LC, Roberts TM, Vogt PK (1997) Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science (New York, NY) 276:1848–1850

    Article  CAS  Google Scholar 

  46. Escobedo JA, Navankasattusas S, Kavanaugh WM, Milfay D, Fried VA, Williams LT (1991) cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor. Cell 65(1):75–82

    Article  PubMed  CAS  Google Scholar 

  47. Hu P, Margolis B, Skolnik EY, Lammers R, Ullrich A, Schlessinger J (1992) Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol Cell Biol 12(3):981–990

    PubMed  CAS  Google Scholar 

  48. Klippel A, Escobedo JA, Fantl WJ, Williams LT (1992) The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor beta receptor. Mol Cell Biol 12(4):1451–1459

    PubMed  CAS  Google Scholar 

  49. Zbuk KM, Eng C (2007) Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer 7(1):35–45

    Article  PubMed  CAS  Google Scholar 

  50. Schreibman IR, Baker M, Amos C, McGarrity TJ (2005) The hamartomatous polyposis syndromes: a clinical and molecular review. Am J Gastroenterol 100(2):476–490

    Article  PubMed  Google Scholar 

  51. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science (New York, NY) 304(5670):554

    Article  CAS  Google Scholar 

  52. Institute TWTS (2010) Catalogue of somatic mutations in cancer PIK3CA. The Wellcome Trust Sanger Institute. http://www.sanger.ac.uk/search?db=cosmic&t=PIK3CA

  53. Vogt PK, Kang S, Elsliger MA, Gymnopoulos M (2007) Cancer-specific mutations in phosphatidylinositol 3-kinase. Trends Biochem Sci 32(7):342–349

    Article  PubMed  CAS  Google Scholar 

  54. Knobbe CB, Reifenberger G (2003) Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3′-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Path (Zurich, Switzerland) 13(4):507–518

    CAS  Google Scholar 

  55. Actor B, Cobbers JM, Buschges R, Wolter M, Knobbe CB, Lichter P, Reifenberger G, Weber RG (2002) Comprehensive analysis of genomic alterations in gliosarcoma and its two tissue components. Genes Chromosom Cancer 34(4):416–427

    Article  PubMed  CAS  Google Scholar 

  56. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai MH, Blanchard KL, Thomas JE (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448(7152):439–444

    Article  PubMed  CAS  Google Scholar 

  57. Pedrero JM, Carracedo DG, Pinto CM, Zapatero AH, Rodrigo JP, Nieto CS, Gonzalez MV (2005) Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Internat J Cancer 114(2):242–248

    Article  CAS  Google Scholar 

  58. Nakayama K, Nakayama N, Kurman RJ, Cope L, Pohl G, Samuels Y, Velculescu VE, Wang TL, Shih Ie M (2006) Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms. Cancer Biol Ther 5(7):779–785

    Article  PubMed  CAS  Google Scholar 

  59. Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK, Testa JR (1996) Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Nat Acad Sci USA 93(8):3636–3641

    Article  PubMed  CAS  Google Scholar 

  60. Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V, Ferrandina G, Benedetti Panici P, Mancuso S, Neri G, Testa JR (1995) Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Internat J Cancer 64(4):280–285

    Article  CAS  Google Scholar 

  61. Tran MA, Gowda R, Sharma A, Park EJ, Adair J, Kester M, Smith NB, Robertson GP (2008) Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res 68(18):7638–7649

    Article  PubMed  CAS  Google Scholar 

  62. Kirkegaard T, Witton CJ, Edwards J, Nielsen KV, Jensen LB, Campbell FM, Cooke TG, Bartlett JM (2010) Molecular alterations in AKT1, AKT2 and AKT3 detected in breast and prostatic cancer by FISH. Histopath 56(2):203–211

    Article  Google Scholar 

  63. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van den Ouweland A, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, Ekong R, Osborne J, Wolfe J, Povey S, Snell RG, Cheadle JP, Jones AC, Tachataki M, Ravine D, Sampson JR, Reeve MP, Richardson P, Wilmer F, Munro C, Hawkins TL, Sepp T, Ali JB, Ward S, Green AJ, Yates JR, Kwiatkowska J, Henske EP, Short MP, Haines JH, Jozwiak S, Kwiatkowski DJ (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science (New York, NY) 277(5327):805–808

    Article  Google Scholar 

  64. Adachi H, Igawa M, Shiina H, Urakami S, Shigeno K, Hino O (2003) Human bladder tumors with 2-hit mutations of tumor suppressor gene TSC1 and decreased expression of p27. J Urol 170(2 Pt 1):601–604

    Article  PubMed  CAS  Google Scholar 

  65. Kenerson HL, Aicher LD, True LD, Yeung RS (2002) Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res 62(20):5645–5650

    PubMed  CAS  Google Scholar 

  66. Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG Jr (2003) TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4(2):147–158

    Article  PubMed  CAS  Google Scholar 

  67. El-Hashemite N, Walker V, Zhang H, Kwiatkowski DJ (2003) Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Cancer Res 63(17):5173–5177

    PubMed  CAS  Google Scholar 

  68. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Gen 15(4):356–362

    Article  CAS  Google Scholar 

  69. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science (New York, NY) 275(5308):1943–1947

    Article  CAS  Google Scholar 

  70. Li DM, Sun H (1997) TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 57(11):2124–2129

    PubMed  CAS  Google Scholar 

  71. Chow LM, Baker SJ (2006) PTEN function in normal and neoplastic growth. Cancer Lett 241(2):184–196

    Article  PubMed  CAS  Google Scholar 

  72. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22):13375–13378

    Article  PubMed  CAS  Google Scholar 

  73. Ali IU, Schriml LM, Dean M (1999) Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Nat Cancer Inst 91(22):1922–1932

    Article  PubMed  CAS  Google Scholar 

  74. Institute TWTS (2010) Catalogue of somatic mutations in cancer PTEN. http://www.sanger.ac.uk/search?db=sangeracuk&t=PTEN&x=18&y=20

  75. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catoretti G, Fisher PE, Parsons R (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Nat Acad Sci USA 96(4):1563–1568

    Article  PubMed  CAS  Google Scholar 

  76. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19(4):348–355

    Article  PubMed  Google Scholar 

  77. Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5(8):671–688

    Article  PubMed  CAS  Google Scholar 

  78. Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, Neshat M, Wang H, Yang L, Gibbons J, Frost P, Dreisbach V, Blenis J, Gaciong Z, Fisher P, Sawyers C, Hedrick-Ellenson L, Parsons R (2001) An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc Nat Acad Sci USA 98(18):10320–10325

    Article  PubMed  CAS  Google Scholar 

  79. Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28(10):721–726

    PubMed  CAS  Google Scholar 

  80. Eng CP, Sehgal SN, Vezina C (1984) Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot 37(10):1231–1237

    PubMed  CAS  Google Scholar 

  81. Hudes GR (2009) Targeting mTOR in renal cell carcinoma. Cancer 115(10 Suppl):2313–2320

    Article  PubMed  CAS  Google Scholar 

  82. Huang S, Houghton PJ (2002) Inhibitors of mammalian target of rapamycin as novel antitumor agents: from bench to clinic. Curr Opin Investig Drugs 3(2):295–304

    PubMed  CAS  Google Scholar 

  83. Seufferlein T, Rozengurt E (1996) Rapamycin inhibits constitutive p70s6k phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res 56(17):3895–3897

    PubMed  CAS  Google Scholar 

  84. Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T (1999) Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res 59(15):3581–3587

    PubMed  CAS  Google Scholar 

  85. Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC Jr, Abraham RT (1997) Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science (New York, NY) 277(5322):99–101

    Article  CAS  Google Scholar 

  86. Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15(7):807–826

    Article  PubMed  CAS  Google Scholar 

  87. Hashemolhosseini S, Nagamine Y, Morley SJ, Desrivieres S, Mercep L, Ferrari S (1998) Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J Biol Chem 273(23):14424–14429

    Article  PubMed  CAS  Google Scholar 

  88. Kawamata S, Sakaida H, Hori T, Maeda M, Uchiyama T (1998) The upregulation of p27Kip1 by rapamycin results in G1 arrest in exponentially growing T-cell lines. Blood 91(2):561–569

    PubMed  CAS  Google Scholar 

  89. Huang S, Liu LN, Hosoi H, Dilling MB, Shikata T, Houghton PJ (2001) p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Cancer Res 61(8):3373–3381

    PubMed  CAS  Google Scholar 

  90. Lieberthal W, Fuhro R, Andry CC, Rennke H, Abernathy VE, Koh JS, Valeri R, Levine JS (2001) Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Physiol 281(4):F693–F706

    CAS  Google Scholar 

  91. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8(2):128–135

    Article  PubMed  CAS  Google Scholar 

  92. Yu Y, Sato JD (1999) MAP kinases, phosphatidylinositol 3-kinase, and p70 S6 kinase mediate the mitogenic response of human endothelial cells to vascular endothelial growth factor. J Cell Physiol 178(2):235–246

    Article  PubMed  CAS  Google Scholar 

  93. Suhara T, Mano T, Oliveira BE, Walsh K (2001) Phosphatidylinositol 3-kinase/Akt signaling controls endothelial cell sensitivity to Fas-mediated apoptosis via regulation of FLICE-inhibitory protein (FLIP). Circ Res 89(1):13–19

    Article  PubMed  CAS  Google Scholar 

  94. Bruns CJ, Koehl GE, Guba M, Yezhelyev M, Steinbauer M, Seeliger H, Schwend A, Hoehn A, Jauch KW, Geissler EK (2004) Rapamycin-induced endothelial cell death and tumor vessel thrombosis potentiate cytotoxic therapy against pancreatic cancer. Clin Cancer Res 10(6):2109–2119

    Article  PubMed  CAS  Google Scholar 

  95. Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, Manola J, Brugarolas J, McDonnell TJ, Golub TR, Loda M, Lane HA, Sellers WR (2004) mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10(6):594–601

    Article  PubMed  CAS  Google Scholar 

  96. Shor B, Zhang WG, Toral-Barza L, Lucas J, Abraham RT, Gibbons JJ, Yu K (2008) A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis. Cancer Res 68(8):2934–2943

    Article  PubMed  CAS  Google Scholar 

  97. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168

    Article  PubMed  CAS  Google Scholar 

  98. Foster DA, Toschi A (2009) Targeting mTOR with rapamycin: one dose does not fit all. Cell cycle (Georgetown, Texas) 8(7):1026–1029

    Article  CAS  Google Scholar 

  99. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66(3):1500–1508

    Article  PubMed  CAS  Google Scholar 

  100. Albert L, Karsy M, Murali R, Jhanwar-Uniyal M (2009) Inhibition of mTOR activates the MAPK pathway in glioblastoma multiforme. Cancer Genom Proteom 6(5):255–261

    CAS  Google Scholar 

  101. Edinger AL, Linardic CM, Chiang GG, Thompson CB, Abraham RT (2003) Differential effects of rapamycin on mammalian target of rapamycin signaling functions in mammalian cells. Cancer Res 63(23):8451–8460

    PubMed  CAS  Google Scholar 

  102. Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, Dang J, Zhu S, Hsueh T, Chen Y, Wang W, Youngkin D, Liau L, Martin N, Becker D, Bergsneider M, Lai A, Green R, Oglesby T, Koleto M, Trent J, Horvath S, Mischel PS, Mellinghoff IK, Sawyers CL (2008) Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 5(1):e8

    Article  PubMed  CAS  Google Scholar 

  103. Houghton P (2008) Targeting the IGF-1/mTOR pathway. AACR Meeting Abstracts 2008 (2_Translational_Cancer_Medicine_Meeting):PL05-03-

  104. Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, Cole DC, Ellingboe J, Ayral-Kaloustian S, Mansour TS, Gibbons JJ, Abraham RT, Nowak P, Zask A (2009) Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 69(15):6232–6240

    Article  PubMed  CAS  Google Scholar 

  105. Breuleux M, Klopfenstein M, Stephan C, Doughty CA, Barys L, Maira SM, Kwiatkowski D, Lane HA (2009) Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition. Mol Cancer Ther 8(4):742–753

    Article  PubMed  CAS  Google Scholar 

  106. Zhong H, Hanrahan C, van der Poel H, Simons JW (2001) Hypoxia-inducible factor 1alpha and 1beta proteins share common signaling pathways in human prostate cancer cells. Biochem Biophys Res Commun 284(2):352–356

    Article  PubMed  CAS  Google Scholar 

  107. Ballou LM, Lin RZ (2008) Rapamycin and mTOR kinase inhibitors. J Chem Biol 1(1–4):27–36

    Article  PubMed  Google Scholar 

  108. Garcia-Echeverria C, Sellers WR (2008) Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27(41):5511–5526

    Article  PubMed  CAS  Google Scholar 

  109. Fan QW, Cheng CK, Nicolaides TP, Hackett CS, Knight ZA, Shokat KM, Weiss WA (2007) A dual phosphoinositide-3-kinase alpha/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res 67(17):7960–7965

    Article  PubMed  CAS  Google Scholar 

  110. Ogita S, LoRusso P (2011) Targeting the PI3kinase-Akt axis beyond rapalogs. Targ Onc. doi:10.1007/s11523-011-0176-7

    Google Scholar 

  111. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, Staroslawska E, Sosman J, McDermott D, Bodrogi I, Kovacevic Z, Lesovoy V, Schmidt-Wolf IG, Barbarash O, Gokmen E, O’Toole T, Lustgarten S, Moore L, Motzer RJ (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. New Eng J Med 356(22):2271–2281

    Article  PubMed  CAS  Google Scholar 

  112. Del Bufalo D, Ciuffreda L, Trisciuoglio D, Desideri M, Cognetti F, Zupi G, Milella M (2006) Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus. Cancer Res 66(11):5549–5554

    Article  PubMed  Google Scholar 

  113. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, Grunwald V, Thompson JA, Figlin RA, Hollaender N, Urbanowitz G, Berg WJ, Kay A, Lebwohl D, Ravaud A (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372(9637):449–456

    Article  PubMed  CAS  Google Scholar 

  114. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T, Franz DN (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. New Eng J Med 363(19):1801–1811

    Article  PubMed  CAS  Google Scholar 

  115. Kelly K (2011) Mammalian target of rapamycin in hematological malignancies. Targ Onc. doi:10.1007/s11523-011-0175-8

    Google Scholar 

  116. Vemulapalli S et al (2011) The role of mammalian target of rapalycin inhibitors in sarcomas. Targ Onc doi:10.1007/s11523-011-0179-4

  117. Kumar Pal S, Figlin R (2011) Future directions of mammalian target of rapamycin inhibitor therapy in renal cell carcinoma. Targ Onc doi:10.1007/s11523-011-0172-y

    Google Scholar 

  118. Hidalgo M, Buckner JC, Erlichman C, Pollack MS, Boni JP, Dukart G, Marshall B, Speicher L, Moore L, Rowinsky EK (2006) A phase I and pharmacokinetic study of temsirolimus (CCI-779) administered intravenously daily for 5 days every 2 weeks to patients with advanced cancer. Clin Cancer Res 12(19):5755–5763

    Article  PubMed  CAS  Google Scholar 

  119. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, Martinelli E, Cajal SRy, Jones S, Vidal L, Shand N, Macarulla T, Ramos FJ, Dimitrijevic S, Zoellner U, Tang P, Stumm M, Lane HA, Lebwohl D, Baselga J (2008) Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26(10):1603–1610. doi:10.1200/jco.2007.14.5482

    Article  PubMed  CAS  Google Scholar 

  120. Mita MM, Mita AC, Chu QS, Rowinsky EK, Fetterly GJ, Goldston M, Patnaik A, Mathews L, Ricart AD, Mays T, Knowles H, Rivera VM, Kreisberg J, Bedrosian CL, Tolcher AW (2008) Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol 26(3):361–367

    Article  PubMed  CAS  Google Scholar 

  121. Gore L, Trippett TM, Katzenstein HM, Boklan JL, Narendaren A, Smith A, Macy M, Narasimhan N, Turner CD, Nieder ML (2010) A multicenter, first-in-pediatrics phase I study of ridaforolimus (AP23573, MK-8669) in patients (pts) with refractory solid tumors. J Clin Oncol (Meeting Abstracts) 28(15_suppl):9531

    Google Scholar 

  122. Geoerger B, Kerr K, Tang CB, Fung KM, Powell B, Sutton LN, Phillips PC, Janss AJ (2001) Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 61(4):1527–1532

    PubMed  CAS  Google Scholar 

  123. Galanis E, Buckner JC, Maurer MJ, Kreisberg JI, Ballman K, Boni J, Peralba JM, Jenkins RB, Dakhil SR, Morton RF, Jaeckle KA, Scheithauer BW, Dancey J, Hidalgo M, Walsh DJ (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol 23(23):5294–5304. doi:10.1200/jco.2005.23.622

    Article  PubMed  CAS  Google Scholar 

  124. Chang SM, Wen P, Cloughesy T, Greenberg H, Schiff D, Conrad C, Fink K, Robins HI, De Angelis L, Raizer J, Hess K, Aldape K, Lamborn KR, Kuhn J, Dancey J, Prados MD (2005) Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 23(4):357–361

    Article  PubMed  CAS  Google Scholar 

  125. Wen PY, Cloughesy T, Kuhn J, Lamborn K, Abrey LE, Lieberman F, Robins HI, Wright J, Prados MD, Gilbert M (2009) Phase I/II study of sorafenib and temsirolimus for patients with recurrent glioblastoma (GBM) (NABTC 05–02). J Clin Oncol (Meeting Abstracts) 27(15S):2006

    Google Scholar 

  126. Geoerger B, Kieran MW, Grupp S, Blaney S, Perek D, Clancy J, Krygowski M, Boni J, Berkenblit A, Spunt SL (2010) Phase II study of temsirolimus in children with high-grade glioma, neuroblastoma, and rhabdomyosarcoma. J Clin Oncol (Meeting Abstracts) 28(15_suppl):9541

    Google Scholar 

  127. Shih KC, Spigel DR, Burris HA III, Brown RH, Shepard GC, Hainsworth JD (2010) Phase II trial of radiation therapy/temozolomide/bevacizumab followed by bevacizumab/everolimus in the first-line treatment of glioblastoma multiforme (GBM). J Clin Oncol (Meeting Abstracts) 28(15_suppl):2075

    Google Scholar 

  128. Kreisl TN, Lassman AB, Mischel PS, Rosen N, Scher HI, Teruya-Feldstein J, Shaffer D, Lis E, Abrey LE (2009) A pilot study of everolimus and gefitinib in the treatment of recurrent glioblastoma (GBM). J Neuro-Oncol 92(1):99–105

    Article  CAS  Google Scholar 

  129. Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C, Eiermann W, Hess D, Morant R, Semiglazov V, Borner M, Salzberg M, Ostapenko V, Illiger H-J, Behringer D, Bardy-Bouxin N, Boni J, Kong S, Cincotta M, Moore L (2005) Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol 23(23):5314–5322. doi:10.1200/jco.2005.66.130

    Article  PubMed  CAS  Google Scholar 

  130. Carpenter JT, Roche H, Campone M, Colomer R, Jagiello-Gruszfeld A, Moore L, D’Amore M, Kong S, Boni J, Baselga J (2005) Randomized 3-arm, phase 2 study of temsirolimus (CCI-779) in combination with letrozole in postmenopausal women with locally advanced or metastatic breast cancer. J Clin Oncol (Meeting Abstracts) 23(16_suppl):564

    Google Scholar 

  131. Baselga J, Semiglazov V, van Dam P, Manikhas A, Bellet M, Mayordomo J, Campone M, Kubista E, Greil R, Bianchi G, Steinseifer J, Molloy B, Tokaji E, Gardner H, Phillips P, Stumm M, Lane HA, Dixon JM, Jonat W, Rugo HS (2009) Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor–positive breast cancer”. J Clin Oncol 27(16):2630–2637. doi:10.1200/jco.2008.18.8391

    Article  PubMed  CAS  Google Scholar 

  132. Baselga J, van Dam PA, Greil R, Gardner H, Bandaru R, Molloy B, Steinseifer J, Phillips P, Dixon JM, Rugo HS (2008) Improved clinical and cell cycle response with an mTOR inhibitor, daily oral RAD001 (everolimus) plus letrozole versus placebo plus letrozole in a randomized phase II neoadjuvant trial in ER + breast cancer. J Clin Oncol (Meeting Abstracts) 26(15_suppl):530

    Google Scholar 

  133. Dalenc F, Campone M, Hupperets P, O’Regan R, Manlius C, Vittori L, Mukhopadhyay P, Massacesi C, Sahmoud T, Andre F (2010) Everolimus in combination with weekly paclitaxel and trastuzumab in patients (pts) with HER2-overexpressing metastatic breast cancer (MBC) with prior resistance to trastuzumab and taxanes: a multicenter phase II clinical trial. J Clin Oncol (Meeting Abstracts) 28(15_suppl):1013

    Google Scholar 

  134. Morrow PH, Wulf GM, Booser DJ, Moore JA, Flores PR, Krop IE, Winer EP, Hortobagyi GN, Yu D, Esteva FJ (2010) Phase I/II trial of everolimus (RAD001) and trastuzumab in patients with trastuzumab-resistant, HER2-overexpressing breast cancer. J Clin Oncol (Meeting Abstracts) 28(15_suppl):1014

    Google Scholar 

  135. Moulder SL, Rivera E, Ensor J, Gonzalez-Angulo A, Christofanilli M, Booser D, Giordano S, Brewster A, Hortobagyi G, Tran H (2009) Phase I trial of escalating doses of weekly everolimus (RAD001) in combination with docetaxel for the treatment of metastatic breast cancer (MBC). J Clin Oncol (Meeting Abstracts) 27(15S):1066

    Google Scholar 

  136. Di Cosimo S, Bendell JC, Cervantes-Ruiperez A, Roda D, Prudkin L, Stein MN, Leighton-Swayze A, Song Y, Ebbinghaus S, Baselga J (2010) A phase I study of the oral mTOR inhibitor ridaforolimus (RIDA) in combination with the IGF-1R antibody dalotozumab (DALO) in patients (pts) with advanced solid tumors. J Clin Oncol (Meeting Abstracts) 28(15_suppl):3008

    Google Scholar 

  137. Duran I, Kortmansky J, Singh D, Hirte H, Kocha W, Goss G, Le L, Oza A, Nicklee T, Ho J, Birle D, Pond GR, Arboine D, Dancey J, Aviel-Ronen S, Tsao MS, Hedley D, Siu LL (2006) A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer 95(9):1148–1154

    Article  PubMed  CAS  Google Scholar 

  138. Yao JC, Phan AT, Chang DZ, Wolff RA, Hess K, Gupta S, Jacobs C, Mares JE, Landgraf AN, Rashid A, Meric-Bernstam F (2008) Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol 26(26):4311–4318

    Article  PubMed  Google Scholar 

  139. Yao JC, Hainsworth JD, Baudin E, Peeters M, Hoersch D, Anthony LB, Klimovsky J, Grouss K, Jehl V, Pavel M (2011) Everolimus plus octreotide LAR (E + O) versus placebo plus octreotide LAR (P + O) in patients with advanced neuroendocrine tumors (NET): Updated results of a randomized, double-blind, placebo-controlled, multicenter phase III trial (RADIANT-2). J Clin Oncol (Meeting Abstracts) 29(suppl 4; abstr 159)

  140. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, Hobday TJ, Okusaka T, Capdevila J, de Vries EG, Tomassetti P, Pavel ME, Hoosen S, Haas T, Lincy J, Lebwohl D, Oberg K (2011) Everolimus for advanced pancreatic neuroendocrine tumors. New Eng J Med 364(6):514–523

    Article  PubMed  CAS  Google Scholar 

  141. Chan JA, Mayer RJ, Jackson N, Malinowski P, Regan E, Kulke M (2010) Phase I study of sorafenib in combination with everolimus (RAD001) in patients with advanced neuroendocrine tumors (NET). J Clin Oncol (Meeting Abstracts) 28(15_suppl):e14597

    Google Scholar 

  142. Mackay HJ, Gallinger S, Tsao MS, McLachlin CM, Tu D, Keiser K, Eisenhauer EA, Oza AM (2010) Prognostic value of microsatellite instability (MSI) and PTEN expression in women with endometrial cancer: results from studies of the NCIC Clinical Trials Group (NCIC CTG). Eur J Cancer 46(8):1365–1373

    Article  PubMed  CAS  Google Scholar 

  143. Oza AM, Elit L, Biagi J, Chapman W, Tsao M, Hedley D, Hansen C, Dancey J, Eisenhauer E (2006) Molecular correlates associated with a phase II study of temsirolimus (CCI-779) in patients with metastatic or recurrent endometrial cancer--NCIC IND 160. J Clin Oncol (Meeting Abstracts) 24(18_suppl):3003

    Google Scholar 

  144. Oza AM, Elit L, Provencher D, Biagi JJ, Panasci L, Sederias J, Dancey JE, Tsao MS, Eisenhauer EA (2008) A phase II study of temsirolimus (CCI-779) in patients with metastatic and/or locally advanced recurrent endometrial cancer previously treated with chemotherapy: NCIC CTG IND 160b. J Clin Oncol (Meeting Abstracts) 26(15_suppl):5516

    Google Scholar 

  145. Slomovitz BM, Lu KH, Johnston T, Munsell M, Ramondetta LM, Broaddus RR, Coleman RL, Walker C, Gershenson DM, Burke TW, Wolf J (2008) A phase II study of oral mammalian target of rapamycin (mTOR) inhibitor, RAD001 (everolimus), in patients with recurrent endometrial carcinoma (EC). J Clin Oncol (Meeting Abstracts) 26(15_suppl):5502

    Google Scholar 

  146. Colombo N, McMeekin S, Schwartz P, Kostka J, Sessa C, Gehrig P, Holloway R, Braly P, Matei D, Einstein M (2007) A phase II trial of the mTOR inhibitor AP23573 as a single agent in advanced endometrial cancer. J Clin Oncol (Meeting Abstracts) 25(18_suppl):5516

    Google Scholar 

  147. Hansel DE, Platt E, Orloff M, Harwalker J, Sethu S, Hicks JL, De Marzo A, Steinle RE, Hsi ED, Theodorescu D, Ching CB, Eng C (2010) Mammalian target of rapamycin (mTOR) regulates cellular proliferation and tumor growth in urothelial carcinoma. Am J Pathol 76(6):3062–3072

    Article  CAS  Google Scholar 

  148. Seront E, Rottey S, Sautois B, D’Hondt LA, Canon JR, Vandenbulcke J, Whenham N, Goeminne J, Verhoeven D, Machiels JH (2010) A single arm, multicenter, phase II trial of everolimus as monotherapy in the palliative treatment of patients with locally advanced or metastatic transitional cell carcinoma after failure of platinum-based chemotherapy. J Clin Oncol (Meeting Abstracts) 28(15_suppl):e15087

    Google Scholar 

  149. Pan C, Ghosh P, Suga JM, Pasquinelli P, Beckett L, deere White R, Lara P Jr (2010) Encouraging activity of bicalutamide and everolimus in castration-resistant prostate cancer (CRPC): early results from a phase I/II clinical trial. J Clin Oncol (Meeting Abstracts) 28(15_suppl):e15131

    Google Scholar 

  150. Ito D, Fujimoto K, Mori T, Kami K, Koizumi M, Toyoda E, Kawaguchi Y, Doi R (2006) In vivo antitumor effect of the mTOR inhibitor CCI-779 and gemcitabine in xenograft models of human pancreatic cancer. Internat J Cancer 118(9):2337–2343

    Article  CAS  Google Scholar 

  151. Javle MM, Xiong H, Reddy S, Bhosale P, Davis D, Varadhachary G, Fogelman D, Kaseb A, Wolff RA, Abbruzzese JL (2009) Inhibition of mammalian target of rapamycin (mTOR) in advanced pancreatic cancer: the results of two prospective phase II studies. J Clin Oncol (Meeting Abstracts) 27(15S):4621

    Google Scholar 

  152. Wolpin BM, Hezel AF, Abrams T, Blaszkowsky LS, Meyerhardt JA, Chan JA, Enzinger PC, Allen B, Clark JW, Ryan DP, Fuchs CS (2009) Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol 27(2):193–198

    Article  PubMed  CAS  Google Scholar 

  153. Sieghart W, Fuereder T, Schmid K, Cejka D, Werzowa J, Wrba F, Wang X, Gruber D, Rasoul-Rockenschaub S, Peck-Radosavljevic M, Wacheck V (2007) Mammalian target of rapamycin pathway activity in hepatocellular carcinomas of patients undergoing liver transplantation. Transplant 83(4):425–432

    Article  CAS  Google Scholar 

  154. Huynh H, Chow KH, Soo KC, Toh HC, Choo SP, Foo KF, Poon D, Ngo VC, Tran E (2009) RAD001 (everolimus) inhibits tumour growth in xenograft models of human hepatocellular carcinoma. J Cell Mol Med 13(7):1371–1380

    Article  PubMed  CAS  Google Scholar 

  155. Chen L, Shiah HS, Chen CY, Lin YJ, Lin PW, Su WC, Chang JY (2009) Randomized, phase I, and pharmacokinetic (PK) study of RAD001, an mTOR inhibitor, in patients (pts) with advanced hepatocellular carcinoma (HCC). J Clin Oncol (Meeting Abstracts) 27(15S):4587

    Google Scholar 

  156. Blaszkowsky LS, Abrams TA, Miksad RA, Zheng H, Meyerhardt JA, Schrag D, Kwak EL, Fuchs C, Ryan DP, Zhu AX (2010) Phase I/II study of everolimus in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol (Meeting Abstracts) 28(15_suppl):e14542

    Google Scholar 

  157. Kelley RK, Nimeiri HS, Vergo MT, Bergsland EK, Ko AH, Munster PN, Reinert A, Mulcahy MF, Benson AB, Venook AP (2010) A phase I trial of the combination of temsirolimus (TEM) and sorafenib (SOR) in advanced hepatocellular carcinoma (HCC). J Clin Oncol (Meeting Abstracts) 28(15_suppl):TPS213

    Google Scholar 

  158. Treiber G, on behalf of the German HCCRADBMSG (2010) Treatment of advanced or metastatic hepatocellular cancer (HCC): interim analysis of a single-arm phase II study of bevacizumab and RAD001. J Clin Oncol (Meeting Abstracts) 28(15_suppl):4102

    Google Scholar 

  159. Altomare I, Russell KB, Uronis HE, Morse M, Hsu SD, Zafar Y, Bendell JC, Starodub A, Honeycutt W, Hurwitz H (2010) Phase II trial of bevacizumab (B) plus everolimus (E) for refractory metastatic colorectal cancer (mCRC). J Clin Oncol (Meeting Abstracts) 28(15_suppl):3535

    Google Scholar 

  160. Costello BA, Qi Y, Borad MJ, Kim GP, Northfelt DW, Erlichman C, Alberts SR (2010) Phase I trial of everolimus and gemcitabine for patients with solid tumors refractory to standard therapy and for a cohort of patients with cholangiocarcinoma/gallbladder cancer. J Clin Oncol (Meeting Abstracts) 28(15_suppl):TPS166

    Google Scholar 

  161. Wilmink J, Deenen MJ, Klumpen H, Sparidans R, Beijnen J, Schellens JH, Richel D (2010) Phase I and pharmacokinetic study of everolimus and capecitabine in patients with solid tumors. J Clin Oncol (Meeting Abstracts) 28(15_suppl):2557

    Google Scholar 

  162. Dumez H, Reichard P, Blay JY, Schoffski P, Morgan JA, Ray-Coquard IL, Hollaender N, Jappe A, Demetri GD, Group CCS (2008) A phase I–II study of everolimus (RAD001) in combination with imatinib in patients (pts) with imatinib-resistant gastrointestinal stromal tumors (GIST). J Clin Oncol (Meeting Abstracts) 26(15_suppl):10519

    Google Scholar 

  163. Pu X, Hildebrandt MA, Lu C, Lin J, Stewart DJ, Ye Y, Gu J, Spitz MR, Wu X (2011) PI3K/PTEN/AKT/mTOR pathway genetic variation predicts toxicity and distant progression in lung cancer patients receiving platinum-based chemotherapy. Lung Cancer (Amsterdam, Netherlands) 71(1):82–88

    Google Scholar 

  164. Soria JC, Shepherd FA, Douillard JY, Wolf J, Giaccone G, Crino L, Cappuzzo F, Sharma S, Gross SH, Dimitrijevic S, Di Scala L, Gardner H, Nogova L, Papadimitrakopoulou V (2009) Efficacy of everolimus (RAD001) in patients with advanced NSCLC previously treated with chemotherapy alone or with chemotherapy and EGFR inhibitors. Ann Oncol 20(10):1674–1681

    Article  PubMed  Google Scholar 

  165. Dong S, Zhang X, Cheng H, Guo A, Zhu J, Yang S, Wu Y (2010) Effect of everolimus and gefitinib on PI3K/akt/mTOR and raf/MEK/ERK pathways in NSCLC cells. J Clin Oncol (Meeting Abstracts) 28(15_suppl):e13654

    Google Scholar 

  166. La Monica S, Galetti M, Alfieri RR, Cavazzoni A, Ardizzoni A, Tiseo M, Capelletti M, Goldoni M, Tagliaferri S, Mutti A, Fumarola C, Bonelli M, Generali D, Petronini PG (2009) Everolimus restores gefitinib sensitivity in resistant non-small cell lung cancer cell lines. Biochem Pharmacol 78(5):460–468

    Article  PubMed  CAS  Google Scholar 

  167. Kris MG, Riely GJ, Azzoli CG, Heelan RT, Krug LM, Pao W, Milton DT, Moore E, Rizvi NA, Miller VA (2007) Combined inhibition of mTOR and EGFR with everolimus (RAD001) and gefitinib in patients with non-small cell lung cancer who have smoked cigarettes: a phase II trial. J Clin Oncol (Meeting Abstracts) 25(18_suppl):7575

    Google Scholar 

  168. Leighl NB, Soria J, Bennouna J, Blais N, Traynor AM, Papadimitrakopoulou V, Klimovsky J, Jappe A, Jehl V, Johnson BE (2010) Phase II study of everolimus plus erlotinib in previously treated patients with advanced non-small cell lung cancer (NSCLC). J Clin Oncol (Meeting Abstracts) 28(15_suppl):7524

    Google Scholar 

  169. Khuri FR, Harvey RD, Saba NF, Owonikoko TK, Kauh J, Shin DM, Sun SY, Browning KM, Tighiouart M, Ramalingam SS (2009) Everolimus, an mTOR inhibitor, in combination with docetaxel for recurrent/refractory NSCLC: a phase I study. J Clin Oncol (Meeting Abstracts) 27(15S):8060

    Google Scholar 

  170. Owonikoko TK, Stoller RG, Petro D, Flaugh R, Hershberger PA, Belani CP, Argiris AE (2008) Phase II study of RAD001 (Everolimus) in previously treated small cell lung cancer (SCLC). J Clin Oncol (Meeting Abstracts) 26(15_suppl):19017

    Google Scholar 

  171. Margolin K, Longmate J, Baratta T, Synold T, Christensen S, Weber J, Gajewski T, Quirt I, Doroshow JH (2005) CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer 104(5):1045–1048

    Article  PubMed  CAS  Google Scholar 

  172. Rao RD, Allred JB, Windschitl HE, Maples WJ, McWilliams RR, Creagan ET, Kaur JS, Kottchade LA, Gornet MK, Pockaj BA, Markovic SN (2007) N0377: Results of NCCTG phase II trial of the mTOR inhibitor RAD-001 in metastatic melanoma. J Clin Oncol (Meeting Abstracts) 25(18_suppl):8530

    Google Scholar 

  173. Margolin KA, Moon J, Flaherty LE, Lao CD, Akerley WL, Sosman JA, Kirkwood JM, Sondak VK, Southwest Oncology G (2010) Randomized phase II trial of sorafenib (SO) with temsirolimus (TEM) or tipifarnib (TIPI) in metastatic melanoma: Southwest Oncology Group Trial S0438. J Clin Oncol (Meeting Abstracts) 28(15_suppl):8502

    Google Scholar 

  174. Kromdijk W, Huitema AD, Kemper ME, Schellens JH, Richel D, Klumpen H (2010) Phase I, pharmacokinetic study of temsirolimus in combination with nelfinavir in patients with solid tumors. J Clin Oncol (Meeting Abstracts) 28(15_suppl):2572

    Google Scholar 

  175. Mwandoro TN, Gao F, Lockhart AC, Suresh R, Tan BR, Wang-Gillam A, Fracasso PM, Picus J (2010) Phase I study of docetaxel and temsirolimus in refractory solid tumors. J Clin Oncol (Meeting Abstracts) 28(15_suppl):e13149

    Google Scholar 

  176. Naing A, LoRusso P, Gupta S, Benjamin RS, Rohren E, Chen HX, Doyle L, Berry DA, Amin HM, Kurzrock R (2010) Dual inhibition of IGFR and mTOR pathways. J Clin Oncol (Meeting Abstracts) 28(15_suppl):3007

    Google Scholar 

  177. Ai YW, Yu HG, Yu JP, Yang Y, Li H, Hu XW, Luo HS (2008) Impact of PI3K/Akt/mdm2 signaling pathway on the sensitivity of gastric cancer cell line SGC7901 to doxorubicin. Zhonghua zhong liu za zhi [Chinese Journal of Oncology] 30(7):494–497

    CAS  Google Scholar 

  178. Moroney JW, Coleman RL, Hong DS, Wheler JJ, Ng C, Bodurka DC, Falchook G, Naing A, Helgason T, Kurzrock R (2009) A phase I trial of liposomal doxorubicin (D), bevacizumab (A), and temsirolimus (T) in advanced malignancy. J Clin Oncol (Meeting Abstracts) 27(15S):e13508

    Google Scholar 

  179. Davies JM, Raftery LL, Sanoff HK, Triglianos T, Keller K, Ivanova A, Bernard SA, Goldberg RM, Dees EC, O’Neil BH (2010) Phase I study of the combination of everolimus (RAD001) with panitumumab in patients with refractory solid malignancies. J Clin Oncol (Meeting Abstracts) 28(15_suppl):e13085

    Google Scholar 

  180. Howard LA, Bullock KE, Bendell JC, Uronis HE, Vlahovic G, Blobe GC, Riedel RF, Nixon AB, Gockerman JP, Hurwitz HI (2009) Bevacizumab (B) plus everolimus (E) and panitumumab (P) in refractory advanced solid tumors. J Clin Oncol (Meeting Abstracts) 27(15S):3551

    Google Scholar 

  181. Pacey S, Rea D, Steven N, Brock C, Knowlton N, Shand N, Hazell K, Zoellner U, O’Donnell A, Judson I (2004) Results of a phase 1 clinical trial investigating a combination of the oral mTOR-inhibitor Everolimus (E, RAD001) and Gemcitabine (GEM) in patients (pts) with advanced cancers. J Clin Oncol (Meeting Abstracts) 22(14_suppl):3120

    Google Scholar 

  182. Sessa C, Tosi D, Vigano L, Albanell J, Hess D, Maur M, Cresta S, Locatelli A, Angst R, Rojo F, Coceani N, Rivera VM, Berk L, Haluska F, Gianni L (2010) Phase Ib study of weekly mammalian target of rapamycin inhibitor ridaforolimus (AP23573; MK-8669) with weekly paclitaxel. Ann Oncol 21(6):1315–1322

    Article  PubMed  CAS  Google Scholar 

  183. Okuno SH, Mahoney MR, Bailey HH, Adkins DR, Maples WJ, Ettinger D, Fitch TR, Bot BM, Erlichman CE (2006) A multicenter phase 2 consortium (P2C) study of the mTOR inhibitor CCI-779 in advanced soft tissue sarcomas (STS). J Clin Oncol (Meeting Abstracts) 24(18_suppl):9504

    Google Scholar 

  184. Chawla SP, Tolcher AW, Staddon AP, Schuetze SM, D’Amato GZ, Blay JY, Sankhala KK, Daly ST, Rivera VM, Demetri GD (2006) Updated results of a phase II trial of AP23573, a novel mTOR inhibitor, in patients (pts) with advanced soft tissue or bone sarcomas. J Clin Oncol (Meeting Abstracts) 24(18_suppl):9505

    Google Scholar 

  185. Ansell SM, Geyer SM, Kurtin PJ, Inwards DJ, Kaufmann SH, Flynn PJ, Morton RF, Luyun RF, Dakhil SR, Gross H, Witzig TE (2006) Anti-tumor activity of mTOR inhibitor temsirolimus for relapsed mantle cell lymphoma: a phase II trial in the North Central Cancer Treatment Group. J Clin Oncol (Meeting Abstracts) 24(18_suppl):7532

    Google Scholar 

  186. Witzig TE, Geyer SM, Ghobrial I, Inwards DJ, Fonseca R, Kurtin P, Ansell SM, Luyun R, Flynn PJ, Morton RF, Dakhil SR, Gross H, Kaufmann SH (2005) Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol 23(23):5347–5356

    Article  PubMed  CAS  Google Scholar 

  187. Witzig E, Habermann T, Reeder C, Micallef I, Ansell S, Porrata L, Johnston P, LaPlant B, Kabat B, Zent C, Zeldenrust S, Inwards D, Colgan J, Call T, Markovic S, Tun H (2009) A phase II trial of the oral mTOR inhibitor everolimus in relapsed non-Hodgkin lymphoma (NHL) and Hodgkin disease (HD). Haematologica 94(suppl2):436, abstr. 1081

    Google Scholar 

  188. Delbaldo C et al (2011) Predictive biomarkers for the activity of mammalian target of rapamycin inhibitors. Targ Onc doi:10.1007/s11523-011-0177-6

  189. Hartford CM, Desai AA, Janisch L, Karrison T, Rivera VM, Berk L, Loewy JW, Kindler H, Stadler WM, Knowles HL, Bedrosian C, Ratain MJ (2009) A phase I trial to determine the safety, tolerability, and maximum tolerated dose of deforolimus in patients with advanced malignancies. Clin Cancer Res 15(4):1428–1434

    Article  PubMed  CAS  Google Scholar 

  190. O’Donnell A, Faivre S, Burris HA 3rd, Rea D, Papadimitrakopoulou V, Shand N, Lane HA, Hazell K, Zoellner U, Kovarik JM, Brock C, Jones S, Raymond E, Judson I (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 26(10):1588–1595

    Article  PubMed  CAS  Google Scholar 

  191. Ma WW, Jacene H, Song D, Vilardell F, Messersmith WA, Laheru D, Wahl R, Endres C, Jimeno A, Pomper MG, Hidalgo M (2009) [18 F]Fluorodeoxyglucose positron emission tomography correlates with Akt pathway activity but is not predictive of clinical outcome during mTOR inhibitor therapy. J Clin Oncol 27(16):2697–2704. doi:10.1200/jco.2008.18.8383

    Article  PubMed  CAS  Google Scholar 

  192. Cejka D, Kuntner C, Preusser M, Fritzer-Szekeres M, Fueger BJ, Strommer S, Werzowa J, Fuereder T, Wanek T, Zsebedics M, Mueller M, Langer O, Wacheck V (2009) FDG uptake is a surrogate marker for defining the optimal biological dose of the mTOR inhibitor everolimus in vivo. Br J Cancer 100(11):1739–1745

    Article  PubMed  CAS  Google Scholar 

  193. Hess G, Herbrecht R, Romaguera J, Verhoef G, Crump M, Gisselbrecht C, Laurell A, Offner F, Strahs A, Berkenblit A, Hanushevsky O, Clancy J, Hewes B, Moore L, Coiffier B (2009) Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol 27(23):3822–3829

    Article  PubMed  CAS  Google Scholar 

  194. Mita MM, Britten CD, Poplin E, Tap WD, Carmona A, Yonemoto L, Wages DS, Bedrosian CL, Rubin EH, Tolcher AW (2008) Deforolimus trial 106- A Phase I trial evaluating 7 regimens of oral Deforolimus (AP23573, MK-8669). J Clin Oncol (Meeting Abstracts) 26(15_suppl):3509

    Google Scholar 

  195. Ellard S, Gelmon KA, Chia S, Clemons M, Kennecke H, Norris B, McIntosh L, Seymour L (2007) A randomized phase II study of two different schedules of RAD001C in patients with recurrent/metastatic breast cancer. J Clin Oncol (Meeting Abstracts) 25(18_suppl):3513

    Google Scholar 

  196. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64(11):3892–3899

    Article  PubMed  CAS  Google Scholar 

  197. Ross RW, Manola J, Oh WK, Ryan C, Kim J, Rastarhuyeva I, Yap JT, Van Den Abbeele AD, Kantoff PW, Taplin M (2008) Phase I trial of RAD001 (R) and docetaxel (D) in castration resistant prostate cancer (CRPC) with FDG-PET assessment of RAD001 activity. J Clin Oncol (Meeting Abstracts) 26(15_suppl):5069

    Google Scholar 

  198. Lane H (2007) The potential of mTOR inhibitors for the treatment of human cancers. AACR Meeting Abstracts 2007 (1_Annual_Meeting):SY21-01-

  199. Murphy JD, Spalding AC, Somnay YR, Markwart S, Ray ME, Hamstra DA (2009) Inhibition of mTOR radiosensitizes soft tissue sarcoma and tumor vasculature. Clin Cancer Res 15(2):589–596

    Article  PubMed  CAS  Google Scholar 

  200. Manegold PC, Paringer C, Kulka U, Krimmel K, Eichhorn ME, Wilkowski R, Jauch KW, Guba M, Bruns CJ (2008) Antiangiogenic therapy with mammalian target of rapamycin inhibitor RAD001 (Everolimus) increases radiosensitivity in solid cancer. Clin Cancer Res 14(3):892–900

    Article  PubMed  CAS  Google Scholar 

  201. Casa AJ, Dearth RK, Litzenburger BC, Lee AV, Cui X (2008) The type I insulin-like growth factor receptor pathway: a key player in cancer therapeutic resistance. Front Biosci 13:3273–3287

    Article  PubMed  CAS  Google Scholar 

  202. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, Yu D (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6(2):117–127

    Article  PubMed  CAS  Google Scholar 

  203. Lu CH, Wyszomierski SL, Tseng LM, Sun MH, Lan KH, Neal CL, Mills GB, Hortobagyi GN, Esteva FJ, Yu D (2007) Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin Cancer Res 13(19):5883–5888

    Article  PubMed  CAS  Google Scholar 

  204. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22(20):7004–7014

    Article  PubMed  CAS  Google Scholar 

  205. McDaid HM, Legrier M, Yang CH, Yan HG, Lopez-Barcons L, Keller SM, Horwitz SB (2007) Combined MEK and mTOR suppression is synergistic in human NSCLC and is mediated via inhibition of protein translation. J Clin Oncol (Meeting Abstracts) 25(18_suppl):10615

    Google Scholar 

  206. Meier F, Zielinski C, Lasithiotakis K, Sinnberg T, Flaherty KT, Schittek B, Kulms D, Garbe C (2008) Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death and abrogates invasive growth of melanoma cells. J Clin Oncol (Meeting Abstracts) 26(15_suppl):20033

    Google Scholar 

Download references

Conflict of interest statement

No benefits in any form have been or will be received from a commercial party related directly or indirectly to thesubject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain C. Mita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarado, Y., Mita, M.M., Vemulapalli, S. et al. Clinical activity of mammalian target of rapamycin inhibitors in solid tumors. Targ Oncol 6, 69–94 (2011). https://doi.org/10.1007/s11523-011-0178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-011-0178-5

Keywords

Navigation