Skip to main content

Advertisement

Log in

PCA-based artifact removal algorithm for stroke detection using UWB radar imaging

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Stroke patients should be dispatched at the highest level of care available in the shortest time. In this context, a transportable system in specialized ambulances, able to evaluate the presence of an acute brain lesion in a short time interval (i.e., few minutes), could shorten delay of treatment. UWB radar imaging is an emerging diagnostic branch that has great potential for the implementation of a transportable and low-cost device. Transportability, low cost and short response time pose challenges to the signal processing algorithms of the backscattered signals as they should guarantee good performance with a reasonably low number of antennas and low computational complexity, tightly related to the response time of the device. The paper shows that a PCA-based preprocessing algorithm can: (1) achieve good performance already with a computationally simple beamforming algorithm; (2) outperform state-of-the-art preprocessing algorithms; (3) enable a further improvement in the performance (and/or decrease in the number of antennas) by using a multistatic approach with just a modest increase in computational complexity. This is an important result toward the implementation of such a diagnostic device that could play an important role in emergency scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bond EJ, Li X, Hagness SC, Van Veen BD (2003) Microwave imaging via space-time beamforming for early detection of breast cancer. IEEE Trans Antennas Propag 51(8):1690–1750

    Article  Google Scholar 

  2. Caorsi S, Frattoni A, Gragnani GL, Nortino E, Pastorino M (1991) Numerical algorithm for dielectric-permittivity microwave imaging of inhomogeneous biological bodies. Med Biol Eng Compu 29(6):NSS37–NSS44

    Article  Google Scholar 

  3. Dielectric properties of body tissue in the frequency range 10 Hz–100 GHz. http://niremf.ifac.cnr.it/tissprop/. Accessed 10 Oct 2013

  4. Elahi MA, Glavin M, Jones E, O’Halloran M (2013) Artifact removal algorithms for microwave imaging of the breast. Prog Electromagn Res 141:185–200

    Article  Google Scholar 

  5. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8:355–369

    Article  PubMed  Google Scholar 

  6. Fhager A, Persson M (2012) Stroke detection and diagnosis with a microwave helmet. In: 6th European conference on antennas and propagation (EuCAP). 1796–1798

  7. Irastorza RM, Blangino E, Carlevaro CM, Vericat F (2014) Modeling of the dielectric properties of trabecular bone samples at microwave frequency. Med Biol Eng Compu 52(5):439–447

    Article  Google Scholar 

  8. Ireland D, Bialkowski M (2011) Microwave head imaging for stroke detection. Prog Electromagn Res M 21:163–175

    Article  Google Scholar 

  9. Jauch et al (2013) Stroke 44:870–947

    Article  PubMed  Google Scholar 

  10. Kabourek V, Cerny P, Mazanek M (2012) Clutter reduction based on Principal Component Analysis technique for hidden detection. Radio Eng 21(1):464–470

    Google Scholar 

  11. Li X, Hagness S (2001) Confocal microwave imaging algorithm for breast cancer detection. IEEE Microw Wirel Compon Lett 11(3):130–132

    Article  Google Scholar 

  12. Medfield Diagnostic (2014) http://www.medfielddiagnostics.com/en/products/. Accessed 12 Nov 2014

  13. Mohammed BJ, Abbosh AM, Mustafa S, Ireland D (2014) Microwave system for head imaging. IEEE Trans Instrum Meas 63(1):117–123

    Article  Google Scholar 

  14. Mozaffrian D, Benjamin EJ, Go AS et al (2015) Heart disease and stroke statistics—2015 update: a report from American Heart Association. Circulation 131:e29–e322

    Article  Google Scholar 

  15. Mustafa S, Mohammed B, Abbosh A (2013) Novel preprocessing techniques for accurate microwave imaging of human brain. IEEE Antennas Wirel Propag Lett 12:460–463

    Article  Google Scholar 

  16. O’Halloran M, Jones E, Glavin M (2010) Quasi-multistaitc MIST beamforming for early detection of breast cancer. IEEE Trans Biomed Eng 57(4):830–840

    Article  PubMed  Google Scholar 

  17. Paulson CN, Chang JT, Romero CE, Watson J, Pearce FJ, Levin N (2005) Ultra-wideband radar methods and techniques of medical sensing and imaging. SPIE Smart Med and Biomed Sensor Technol III 6007:96–107

    Google Scholar 

  18. Persson M, Fhager A, Trefnà HD, Yinan Yu, McKelvey T, Pegenius G et al (2014) Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans Biomed Eng 61(11):2806–2817

    Article  PubMed  Google Scholar 

  19. Ricci E, Maggio F, Rossi T, Cianca E, Ruggieri M (2015) UWB radar imaging based on space-time beamforming for stroke detection. In: 6th European conference of the international federation for medical and biological engineering. Springer International Publishing. 946–949

  20. Ricci E, Di Domenico S, Cianca E, Rossi T (2015) Artifact removal algorithms for stroke detection using a multistatic MIST beamforming algorithm. In: 37th annual international conference of the IEEE engineering in medicine and biology society EMBC. 1930–1933

  21. Ricci E, Colucciello A, Di Domenico S, Cianca E, Rossi T (2015) Modified RAR and PLSR-based artifact removal for stroke detection in UWB radar imaging. In: 5th international conference wireless vitae. in press

  22. Scapaticci R, Di Donato L, Catapano I, Crocco L (2012) A feasibility study on microwave imaging for brain stroke monitoring. Prog Electromagn Research B 40:305–324

    Article  Google Scholar 

  23. Semenov SY, Corfield DR (2008) Microwave tomography for brain imaging: feasibility assessment for stroke detection. Int J Antennas Propag. doi:10.1155/2008/254830

    Google Scholar 

  24. Semenov SY, Svenson RH, Posukh VG, Nazarov AG, Sizov YE, Bulyshev AE et al (2002) Dielectrical spectroscopy of canine myocardium during acute ischemia and hypoxia at frequency spectrum from 100 kHz to 6 GHz. IEEE Trans Med Imaging 21(6):703–707

    Article  PubMed  Google Scholar 

  25. Suzuki S, Matsui T, Kawahara H, Ichiki H, Shimizu J, Kondo Y et al (2009) A non-contact vital sign monitoring system for ambulances using dual-frequency microwave radars. Med Biol Eng Compu 47(1):101–105

    Article  Google Scholar 

  26. Verma PK, Gaikwad AN, Singh D, Nigam MJ (2009) Analysis of clutter reduction techniques for trough wall imaging in UWB range. Prog Electromagn Res B 17:29–48

    Article  Google Scholar 

  27. Yin T, Ali FH, Reyes-Aldasoro CC (2015) A robust and artifact resistant algorithm of ultrawideband imaging system for breast cancer detection. IEEE Trans Biomed Eng 62(6):1514–1525

    Article  Google Scholar 

  28. Zhang H, Flynn B, Erdogan AT, Arslan T (2012) Microwave imaging for brain tumor detection using an UWB Vivaldi antenna array. Antennas Propag Conf LAPC. doi:10.1109/LAPC.2012.6402964

    Google Scholar 

  29. Zhi H, Chin F (2006) Entropy-based time window for artifact removal in UWB imaging of breast cancer detection. IEEE Signal Process Lett 13(10):585–588

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernestina Cianca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricci, E., di Domenico, S., Cianca, E. et al. PCA-based artifact removal algorithm for stroke detection using UWB radar imaging. Med Biol Eng Comput 55, 909–921 (2017). https://doi.org/10.1007/s11517-016-1568-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1568-8

Keywords

Navigation