Skip to main content
Log in

Analysis of biomechanical changes after removal of instrumentation in lumbar arthrodesis by finite element analysis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate the change in biomechanical milieu following removal of pedicle screws in instrumented single level lumbar arthrodesis. Using a validated finite element (FE) model of the intact lumbar spine (L2–5), two scenarios of L3–4 lumbar fusion were simulated: posterolateral fusion (PLF) at L3–4 using pedicle screws (PLF with pedicle screws; WiP) and L3–4 lumbar posterolateral fusion state after removal of pedicle screws (PLF without pedicle screws; WoP). The WiP model had greater range of motion (ROM) at each adjacent segment than the WoP model. This phenomenon became pronounced at the proximal adjacent segment under flexion moment. Similarly, removal of pedicle screws (the WoP model) relieved the maximal von Mises stress at adjacent segments under 4 moments compared to the WiP model. This study demonstrated that removal of pedicle screws could decrease stiffness of fusion segments, which would reduce the disk stress of adjacent segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bono CM, Lee CK (2004) Critical analysis of trends in fusion for degenerative disc disease over the past 20 years: influence of technique on fusion rate and clinical outcome. Spine 29:455–463

    Article  PubMed  Google Scholar 

  2. Bono CM, Khandha A et al (2007) Residual sagittal motion after lumbar fusion: a finite element analysis with implications on radiographic flexion-extension criteria. Spine 32:417–422

    Article  PubMed  Google Scholar 

  3. Chen CS, Cheng CK et al (2001) Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys 23:483–491

    Article  PubMed  CAS  Google Scholar 

  4. David T (2007) Long-term results of one-level lumbar arthroplasty: minimum 10-year follow-up of the CHARITE artificial disc in 106 patients. Spine 32:661–666

    Article  PubMed  Google Scholar 

  5. Deckey JE, Court C et al (2000) Loss of sagittal plane correction after removal of spinal implants. Spine 25:2453–2460

    Article  PubMed  CAS  Google Scholar 

  6. Etebar S, Cahill DW (1999) Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. J Neurosurg 90:163–169

    PubMed  CAS  Google Scholar 

  7. Fischgrund JS, Mackay M et al (1997) 1997 Volvo Award winner in clinical studies. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine 22:2807–2812

    Article  PubMed  CAS  Google Scholar 

  8. Goel VK, Kim YE et al (1988) An analytical investigation of the mechanics of spinal instrumentation. Spine 13:1003–1011

    Article  PubMed  CAS  Google Scholar 

  9. Guan Y, Yoganandan N et al (2006) Validation of a clinical finite element model of the human lumbosacral spine. Med Biol Eng Comput 44:633–641

    Article  PubMed  Google Scholar 

  10. Ha K, Lee J et al (2009) Bone graft volumetric changes and clinical outcomes after instrumented lumbar or lumbosacral fusion: a prospective cohort study with a five-year follow-up. Spine 34:1663–1668

    Article  PubMed  Google Scholar 

  11. Harrop JS, Youssef JA et al (2008) Lumbar adjacent segment degeneration and disease after arthrodesis and total disc arthroplasty. Spine 33:1701–1707

    Article  PubMed  Google Scholar 

  12. Jackson RK, Boston DA et al (1985) Lateral mass fusion. A prospective study of a consecutive series with long-term follow-up. Spine 10:828–832

    Article  PubMed  CAS  Google Scholar 

  13. Kim Y (2007) Finite element analysis of anterior lumbar interbody fusion: threaded cylindrical cage and pedicle screw fixation. Spine 32:2558–2568

    Article  PubMed  Google Scholar 

  14. Kim HJ, Moon SH et al (2009) Comparison of mechanical motion profiles following instrumented fusion and non-instrumented fusion at the L4–5 segment. Clin Invest Med 32:E64–E69

    PubMed  Google Scholar 

  15. Kornblum MB, Fischgrund JS et al (2004) Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective long-term study comparing fusion and pseudarthrosis. Spine 29:726–733

    Article  PubMed  Google Scholar 

  16. Kumar MN, Baklanov A et al (2001) Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J 10:314–319

    Article  PubMed  CAS  Google Scholar 

  17. Lai P, Chen L et al (2004) Relation between laminectomy and development of adjacent segment instability after lumbar fusion with pedicle fixation. Spine 29:2527–2532

    Article  PubMed  Google Scholar 

  18. Lee CK (1988) Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 13:375–377

    Article  PubMed  CAS  Google Scholar 

  19. Ma HT, Griffith JF et al (2009) Kinematics of the lumbar spine in elderly subjects with decreased bone mineral density. Med Biol Eng Comput 47:783–789

    Article  PubMed  Google Scholar 

  20. Park P, Garton HJ et al (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine 29:1938–1944

    Article  PubMed  Google Scholar 

  21. Penta M, Sandhu A et al (1995) Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine 20:743–747

    Article  PubMed  CAS  Google Scholar 

  22. Pintar FA, Yoganandan N et al (1992) Biomechanical properties of human lumbar spine ligaments. J Biomech 25:1351–1356

    Article  PubMed  CAS  Google Scholar 

  23. Potter BK, Kirk KL et al (2006) Loss of coronal correction following instrumentation removal in adolescent idiopathic scoliosis. Spine 31:67–72

    Article  PubMed  Google Scholar 

  24. Rahm MD, Hall BB (1996) Adjacent-segment degeneration after lumbar fusion with instrumentation: a retrospective study. J Spinal Disord 9:392–400

    Article  PubMed  CAS  Google Scholar 

  25. Shirazi-Adl SA, Shrivastava SC et al (1984) Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. Spine 9:120–134

    Article  PubMed  CAS  Google Scholar 

  26. Shono Y, Kaneda K et al (1998) Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine. Spine 23:1550–1558

    Article  PubMed  CAS  Google Scholar 

  27. Wagner DR, Lotz JC (2004) Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus. J Orthop Res 22:901–909

    Article  PubMed  Google Scholar 

  28. Wai EK, Santos ER et al (2006) Magnetic resonance imaging 20 years after anterior lumbar interbody fusion. Spine 31:1952–1956

    Article  PubMed  Google Scholar 

  29. Wu HC, Yao RF (1976) Mechanical behavior of the human annulus fibrosus. J Biomech 9:1–7

    Article  PubMed  CAS  Google Scholar 

  30. Yamamoto I, Panjabi MM et al (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14:1256–1260

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grant No. R01-2006-000-10933-0 from the Basic Research Program of the Korea Science & Engineering Foundation, the Brain Korea 21 Project for Medical Science at Yonsei University, and AOSPINE research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan-Mo Lee.

Additional information

H.-J. Kim and H.-J. Chun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ., Chun, HJ., Moon, SH. et al. Analysis of biomechanical changes after removal of instrumentation in lumbar arthrodesis by finite element analysis. Med Biol Eng Comput 48, 703–709 (2010). https://doi.org/10.1007/s11517-010-0621-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0621-2

Keywords

Navigation