Skip to main content
Log in

Influence of Plasmonic Nanoparticles on the Performance of Colorimetric Cell Viability Assays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The conventional colorimetric assays based on measurement of the metabolic activity are routinely used to evaluate the cytotoxicity of nanomaterials (NMs). However, due to the varying absorbance properties of plasmonic NMs in the visible region of the spectrum, obtained results can be misleading. In this study, MTT, MTS, and WST-1 colorimetric cell viability assays were evaluated in the presence of gold (AuNPs) or silver nanoparticles (AgNPs). Since a living cell a complex system containing many molecular and ionic species, the plasmonic AuNP and AgNPs may selectively interact with intracellular components possessing thiol, amino, and carboxyl group moieties change the aggregation behavior of the NMs and thus their absorbance. A series of UV/Vis and DLS experiments were conducted to understand the interference possibility of the tested plasmonic NMs. The results show that the AuNPs and AgNPs do not have absorption at the wavelength where MTT formazan is measured while the both NPs may interfere with absorbance of MTS and WST-1 formazan.The overall assessments show that MTT assay is more suitable for the cell viability evaluation of spherical AuNPs and AgNPs with an average diameter of 50 nm. This study also suggests that a preliminary ex situ evaluation of plasmonic nanoparticles can provide valuable information for the suitability of the assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135

    Article  CAS  Google Scholar 

  2. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 82(2):412–417

    Article  CAS  Google Scholar 

  3. Huang X (2006) Gold nanoparticles used in cancer cell diagnostics, selective photothermal therapy and catalysis of NADH oxidation reaction

  4. Sur I, Altunbek M, Kahraman M, Culha M (2012) The influence of the surface chemistry of silver nanoparticles on cell death. Nanotechnology 23(37):375102

    Article  Google Scholar 

  5. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924

    Article  CAS  Google Scholar 

  6. Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A (2006) Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22(22):9322–9328

    Article  CAS  Google Scholar 

  7. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 3(1):95–101

    Article  CAS  Google Scholar 

  8. Chen J, Han C, Lin X, Tang Z, Su S (2006) Effect of silver nanoparticle dressing on second degree burn wound. Zhonghua wai ke za zhi [Chinese journal of surgery] 44(1):50–52

    Google Scholar 

  9. Keleştemur S, Kilic E, Uslu Ü, Cumbul A, Ugur M, Akman S, Culha M (2012) Wound healing properties of modified silver nanoparticles and their distribution in mouse organs after topical application. Nano Biomedicine and Engineering 4(4):170–176

    Google Scholar 

  10. Lee P, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395

    Article  CAS  Google Scholar 

  11. West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5(1):285–292

    Article  CAS  Google Scholar 

  12. Martinez-Castanon G, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza J, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10(8):1343–1348

    Article  CAS  Google Scholar 

  13. te Baratón M-I (2003) Synthesis, functionalization and surface treatment of nanoparticles

  14. Doty RC, Tshikhudo TR, Brust M, Fernig DG (2005) Extremely stable water-soluble Ag nanoparticles. Chem Mater 17(18):4630–4635

    Article  CAS  Google Scholar 

  15. Schulz-Dobrick M, Sarathy KV, Jansen M (2005) Surfactant-free synthesis and functionalization of gold nanoparticles. J Am Chem Soc 127(37):12816–12817

    Article  CAS  Google Scholar 

  16. Roux S, Garcia B, Bridot J-L, Salomé M, Marquette C, Lemelle L, Gillet P, Blum L, Perriat P, Tillement O (2005) Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalization by the electroluminescent luminol. Langmuir 21(6):2526–2536

    Article  CAS  Google Scholar 

  17. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96(4):1533–1554

    Article  CAS  Google Scholar 

  18. Fan H, Chen Z, Brinker CJ, Clawson J, Alam T (2005) Synthesis of organo-silane functionalized nanocrystal micelles and their self-assembly. J Am Chem Soc 127(40):13746–13747

    Article  CAS  Google Scholar 

  19. Ramirez E, Jansat S, Philippot K, Lecante P, Gomez M, Masdeu-Bultó AM, Chaudret B (2004) Influence of organic ligands on the stabilization of palladium nanoparticles. J Organomet Chem 689(24):4601–4610

    Article  CAS  Google Scholar 

  20. Woehrle GH, Hutchison JE (2005) Thiol-functionalized undecagold clusters by ligand exchange: synthesis, mechanism, and properties. Inorg Chem 44(18):6149–6158

    Article  CAS  Google Scholar 

  21. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  Google Scholar 

  22. Kim S, Choi JE, Choi J, Chung K-H, Park K, Yi J, Ryu D-Y (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol in Vitro 23(6):1076–1084

    Article  CAS  Google Scholar 

  23. Gao W, Xu K, Ji L, Tang B (2011) Effect of gold nanoparticles on glutathione depletion-induced hydrogen peroxide generation and apoptosis in HL7702 cells. Toxicol Lett 205(1):86–95

    Article  CAS  Google Scholar 

  24. Joseph D, Tyagi N, Geckeler C, Geckeler KE (2014) Protein-coated pH-responsive gold nanoparticles: microwave-assisted synthesis and surface charge-dependent anticancer activity. Beilstein journal of nanotechnology 5(1):1452–1462

    Article  Google Scholar 

  25. Marini M, De Niederhausern S, Iseppi R, Bondi M, Sabia C, Toselli M, Pilati F (2007) Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules 8(4):1246–1254

    Article  CAS  Google Scholar 

  26. Tkachenko AG, Xie H, Liu Y, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL (2004) Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 15(3):482–490

    Article  CAS  Google Scholar 

  27. Dunne M, Corrigan O, Ramtoola Z (2000) Influence of particle size and dissolution conditions on the degradation properties of polylactide- < i > co</i > −glycolide particles. Biomaterials 21(16):1659–1668

    Article  CAS  Google Scholar 

  28. Shi J, Sun X, Zou X, Zhang H (2014) Amino acid-dependent transformations of citrate-coated silver nanoparticles: impact on morphology, stability and toxicity. Toxicol Lett

  29. Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2012) Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 86(7):1123–1136

    Article  CAS  Google Scholar 

  30. Wörle-Knirsch J, Pulskamp K, Krug H (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6(6):1261–1268

    Article  Google Scholar 

  31. Sabatini CA, Pereira RV, Gehlen MH (2007) Fluorescence modulation of acridine and coumarin dyes by silver nanoparticles. J Fluoresc 17(4):377–382

    Article  CAS  Google Scholar 

  32. Huang X, El-Sayed IH, Yi X, El-Sayed MA (2005) Gold nanoparticles: catalyst for the oxidation of NADH to NAD < sup > +</sup>. J Photochem Photobiol B Biol 81(2):76–83

    Article  CAS  Google Scholar 

  33. Oostingh GJ, Casals E, Italiani P, Colognato R, Stritzinger R, Ponti J, Pfaller T, Kohl Y, Ooms D, Favilli F (2011) Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Particle and fibre toxicology 8(1):8

    Article  CAS  Google Scholar 

  34. Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160(2):171–177

    Article  CAS  Google Scholar 

  35. Pagliacci M, Spinozzi F, Migliorati G, Fumi G, Smacchia M, Grignani F, Riccardi C, Nicoletti I (1993) Genistein inhibits tumour cell growth in vitro but enhances mitochondrial reduction of tetrazolium salts: a further pitfall in the use of the MTT assay for evaluating cell growth and survival. Eur J Cancer 29(11):1573–1577

    Article  Google Scholar 

  36. Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, Gobbert C, Voetz M, Hardinghaus F, Schnekenburger J (2011) Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Particle and fibre toxicology 8 (1)

  37. Chithrani BD, Chan WC (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550

    Article  CAS  Google Scholar 

  38. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11(11):1–17

    Google Scholar 

  39. Li L, Sun J, Li X, Zhang Y, Wang Z, Wang C, Dai J, Wang Q (2012) Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity. Biomaterials 33(6):1714–1721

    Article  CAS  Google Scholar 

  40. Hatipoglu MK, Keleştemur S, Altunbek M, Culha M (2015) Source of cytotoxicity in a colloidal silver nanoparticle suspension. Nanotechnology 26(19):195103

    Article  Google Scholar 

  41. Leroy P, Sapin-Minet A, Pitarch A, Boudier A, Tournebize J, Schneider R (2011) Interactions between gold nanoparticles and macrophages: activation or inhibition? Nitric Oxide 25(1):54–56

    Article  CAS  Google Scholar 

  42. Han X, Gelein R, Corson N, Wade-Mercer P, Jiang J, Biswas P, Finkelstein JN, Elder A, Oberdörster G (2011) Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology 287(1):99–104

    Article  CAS  Google Scholar 

  43. Handley DA (1989) Methods for synthesis of colloidal gold. Colloidal gold: principles, methods, and applications 1:13–32

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Yeditepe University and TUBITAK for the financial support during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Culha.

Electronic Supplementary Material

ESM 1

(PDF 875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altunbek, M., Culha, M. Influence of Plasmonic Nanoparticles on the Performance of Colorimetric Cell Viability Assays. Plasmonics 12, 1749–1760 (2017). https://doi.org/10.1007/s11468-016-0442-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0442-8

Keywords

Navigation