Skip to main content
Log in

Generating of rice OsCENH3-GFP transgenic plants and their genetic applications

  • Published:
Chinese Science Bulletin

Abstract

In order to investigate rice functional centromeres, OsCENH3-GFP chimeric gene was constructed and transformed into the indica rice variety, Zhongxian 3037, mediated by Agrobacturium. The integration of the exogenous genes in the transgenic plants was confirmed by PCR and Southern blotting. The transgenic plants grow normally during their whole life time, just like Zhongxian 3037. No significant defects were detected in either mitosis or meiosis of the transgenic plants. The overlapping of GFP signals and anti-CENH3 foci in both mitotic and meiotic cells from T0 and T1 generation plants indicated that GFP had been successfully fused with CENH3, so the GFP signals can well represent the CENH3 locations on each chromosome. To evaluate the applicability of the transgenic plants to other genetic studies, fluorescence in situ hybridization (FISH) using rice centromeric tandem repetitive sequence CentO as the probe was conducted on the zygotene chromosomes of pollen mother cells (PMCs). It has been revealed that the GFP signals are overlapping with CentO FISH signals, showing that CentO is one of the key elements constituting rice functional centromeres. Immunofluorescent staining using anti-α-tublin antibody and anti-PAIR2 antibody on the chromosomes during mitosis and meiosis stages of the transgenic plants further reveals that OsCENH3-GFP transgenic plants can be widely used for studying rice molecular biology, especially for tagging functional centromeres in both living cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheeseman I M, Drubin D G, Barnes G. Simple centromere, complex kinetochore: Linking spindle microtubules and centromeric DNA in budding yeast. J Cell Biol, 2002, 157: 199–203

    Article  PubMed  CAS  Google Scholar 

  2. Schueler M G, Higgins A W, Rudd M K, et al. Genomic and genetic definition of a functional human centromere. Science, 2001, 294: 109–115

    Article  PubMed  CAS  Google Scholar 

  3. Rudd M K, Schueler M G, Willard H F. Sequence organization and functional annotation of human centromeres. Cold Spring Harb Symp Quant Biol, 2003, 68: 141–149

    Article  PubMed  CAS  Google Scholar 

  4. Wevrick R, Willard H F. Long-range organization of tandem arrays of α satellite DNA at the centromeres of human chromosomes: High frequency array-length polymorphism andmeiotic stability. Proc Natl Acad Sci USA, 1989, 86: 9394–9398

    Article  PubMed  CAS  Google Scholar 

  5. Kuznetsova I, Podgornaya O, Ferguson-Smith M A. High-resolution organization of mouse centromeric and pericentromeric DNA. Cytogenet Genome Res, 2006, 112: 248–255

    Article  PubMed  CAS  Google Scholar 

  6. Kumekawa N, Hosouchi T, Tsuruoka H, et al. The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNA Res, 2000, 7: 315–321

    Article  PubMed  CAS  Google Scholar 

  7. Kumekawa N, Hosouchi T, Tsuruoka H, et al. The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res, 2001, 8: 285–290

    Article  PubMed  CAS  Google Scholar 

  8. Hosouchi T, Kumekawa N, Tsuruoka H, et al. Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res, 2002, 9: 117–121

    Article  PubMed  CAS  Google Scholar 

  9. Neumann P, Yan H H, Jiang J M. The centromeric retrotransposons of rice are transcribed and differentially processed by RNAi. Genetics, 2007, 176: 749–761

    Article  PubMed  CAS  Google Scholar 

  10. Ma J, Jackson S A. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res, 2006, 16: 251–259

    Article  PubMed  CAS  Google Scholar 

  11. Yan H H, Ito H, Nobuta K, et al. Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell, 2006,18: 2123–2133

    Article  PubMed  CAS  Google Scholar 

  12. Zhang W L, Yi C D, Bao W D, et al. The transcribed 165-bp CentO satellite is the major functional centromeric element in the wild rice species Oryza punctata. Plant Physiol, 2005, 139: 306–315

    Article  PubMed  CAS  Google Scholar 

  13. Nagaki K, Neumann P, Zhang D, et al. Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol, 2005, 22:845–855

    Article  PubMed  CAS  Google Scholar 

  14. Cheng Z K, Dong F G, Langdon T, et al. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell, 2002, 14: 1691–1704

    Article  PubMed  CAS  Google Scholar 

  15. Dong F G, Miller J T, Jackson S A, et al. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci USA, 1998, 95: 8135–8140

    Article  PubMed  CAS  Google Scholar 

  16. Vaughan D A, Morishima H, Kadowaki K. Diversity in the Oryza genus. Curr Opin Plant Biol, 2003, 6: 139–146

    Article  PubMed  CAS  Google Scholar 

  17. Bao W D, Zhang W L, Yang Q Y, et al. Diversity of centromeric repeats in two closely related wild rice species, O. officinalis and O. rhizomatis. Mol Genet Genomics, 2006, 275: 421–430

    Article  PubMed  CAS  Google Scholar 

  18. Amor D J, Kalitsis P, Sumer H, et al. Building the centromere: From foundation proteins to 3D organization. Trends Cell Biol, 2004, 14: 359–368

    Article  PubMed  CAS  Google Scholar 

  19. Palmer D K, O’Day K, Wener M H, et al. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol, 1987, 104: 805–815

    Article  PubMed  CAS  Google Scholar 

  20. Palmer D K, O’Day K, Trong H L, et al. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci USA, 1991, 88: 3734–3738

    Article  PubMed  CAS  Google Scholar 

  21. Jiang J M, Birchler J A, Parrott W A, et al. A molecular view of plant centromeres. Trends Plant Sci, 2003, 8: 570–575

    Article  PubMed  CAS  Google Scholar 

  22. Talbert P B, Masuelli R, Tyagi A P, et al. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell, 2002, 14: 1053–1066

    Article  PubMed  CAS  Google Scholar 

  23. Zhong C X, Marshall J B, Topp C, et al. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell, 2002, 14: 2825–2836

    Article  PubMed  CAS  Google Scholar 

  24. Nagaki K, Cheng Z K, Ouyang S, et al. Sequencing of a rice centromere uncovers active genes. Nat Genet, 2004, 36: 138–145

    Article  PubMed  CAS  Google Scholar 

  25. Malik H S, Henikoff S. Adaptive evolution of Cid, a centromerespecific histone in Drosophila. Genetics, 2001, 157: 1293–1298

    PubMed  CAS  Google Scholar 

  26. Warburton P E, Cooke C A, Bourassa S, et al. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol, 1997, 7: 901–904

    Article  PubMed  CAS  Google Scholar 

  27. Yoda K, Ando S, Morishita S, et al. Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci USA, 2000, 97: 7266–7271

    Article  PubMed  CAS  Google Scholar 

  28. Westermann S, Cheeseman I M, Anderson S, et al. Architecture of the budding yeast kinetochore reveals a conserved molecular core. J Cell Biol, 2003, 163: 215–222

    Article  PubMed  CAS  Google Scholar 

  29. Blower M D, Karpen G H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol, 2001, 3: 730–739

    Article  PubMed  CAS  Google Scholar 

  30. Howman E V, Fowler K J, Newson A J, et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci USA, 2000, 97: 1148–1153

    Article  PubMed  CAS  Google Scholar 

  31. Blower M D, Sullivan B A, Karpen G H. Conserved organization of centromeric chromatin in flies and humans. Dev Cell, 2002, 2: 319–330

    Article  PubMed  CAS  Google Scholar 

  32. Niwa Y, Hirano T, Yoshimoto K, et al. Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J, 1999, 18: 455–463

    Article  PubMed  CAS  Google Scholar 

  33. Yu H X, Liu Q Q, Wang L, et al. Optimization of Agrobacterium-mediated transformation of rice mature embryos and regeneration of transgenic plants with metr gene (in Chinese). Hereditas, 2005, 27: 756–762

    Google Scholar 

  34. Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res, 1980, 8: 4321–4325

    Article  PubMed  CAS  Google Scholar 

  35. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1989

    Google Scholar 

  36. Zhang D, Yang Q, Bao W, et al. Molecular cytogenetic characterization of the Antirrhinum majus genome. Genetics, 2005, 169: 325–335

    Article  PubMed  CAS  Google Scholar 

  37. Nonomura K I, Nakano M, Eiguchi M, et al. PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J Cell Sci, 2006, 119: 217–225

    Article  PubMed  CAS  Google Scholar 

  38. Malik H S, Henikoff S. Phylogenomics of the nucleosome. Nat Struct Biol, 2003, 10: 882–891

    Article  PubMed  CAS  Google Scholar 

  39. Lermontova I, Schubert V, Fuchs J, et al. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell, 2006, 18: 2443–2451

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhuKuan Cheng.

Additional information

Contributed equally to this work

Supported by the National Natural Science Foundation of China (Grants Nos. 30770131, 30530070 and 30671285) and High Technology Research and Development Program of China (Grant No. 2006AA02Z124)

About this article

Cite this article

Yu, H., Wang, X., Gong, Z. et al. Generating of rice OsCENH3-GFP transgenic plants and their genetic applications. Chin. Sci. Bull. 53, 2981–2988 (2008). https://doi.org/10.1007/s11434-008-0376-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0376-4

Keywords

Navigation