Skip to main content
Log in

Geometric optimization of electrostatic fields for stable levitation of metallic materials

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Experimental and computational methods are used to optimize the electrostatic field for levitating metallic materials. The calculated launch voltage increases linearly with the distance between top and bottom electrodes. The combination of a larger top electrode diameter with a smaller bottom diameter may enhance the levitation ability because the electric field intensity near the levitated sample is strengthened. Top convex and bottom concave electrodes can guarantee good levitation stability but decrease the levitation force. The design of bottom electrode is crucial to attain not only a stable levitation state but also a higher levitation capability. As a measure characterizing the intrinsic levitation ability of various materials, the product of density and diameter of levitated samples can be used to determine the launch voltage for counteracting gravity according to a power relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wert M J, Hofmeister W H, Bayuzick R J. Effect of dilute amounts of oxygen solute on nucleation of zirconium. J Appl Phys, 2003, 93(6): 3643–3651

    Article  Google Scholar 

  2. Chathoth S M, Damaschke B, Samwer K, et al. Thermophysical properties of Si, Ge, and Si-Ge alloy melts measured under microgravity. Appl Phys Lett, 2008, 93: 071902

    Article  Google Scholar 

  3. Aoyama T, Kuribayashi K. Novel criterion for splitting of plate-like crystal growing in undercooled silicon melts. Acta Mater, 2003, 51: 2297–2303

    Article  Google Scholar 

  4. Kelton K F, Lee G W, Gangopadhyay A K, et al. First X-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier. Phys Rev Lett, 2003, 90(19): 195504

    Article  Google Scholar 

  5. Brillo J, Pommrich A I, Meyer A. Relation between self-diffusion and viscosity in dense liquids: New experimental results from electrostatic levitation. Phys Rev Lett, 2011, 107: 165902

    Article  Google Scholar 

  6. Mauro N A, Kelton K F. A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids. Rev Sci Instrum, 2011, 82: 035114

    Article  Google Scholar 

  7. Rhim W K, Chung S K, Barber D, et al. An electrostatic levitator for high-temperature containerless materials processing in 1-g. Rev Sci Instrum, 1993, 64(10): 2961–2970

    Article  Google Scholar 

  8. Rulison A J, Watkins J L, Zambrano B. Electrostatic containerless processing system. Rev Sci Instrum, 1997, 68(7): 2856–2863

    Article  Google Scholar 

  9. Ishikawa T, Paradis P F, Yoda S. New sample levitation initiation and imaging techniques for the processing of refractory metals with an electrostatic levitator furnace. Rev Sci Instrum, 2001, 72(5): 2490–2495

    Article  Google Scholar 

  10. Félici N J. Forces et charges de petits objets en contact avec une électrode affectée d’un champ électrique. Rev Gén Elec, 1966, 75(10): 1145–1160

    Google Scholar 

  11. Pérez A T. Charge and force on a conducting sphere between two parallel electrodes. J Electrostat, 2002, 56: 199–217

    Article  Google Scholar 

  12. Colver G M. Dynamic and stationary charging of heavy metallic and dielectric particles against a conducting wall in the presence of a dc applied electric field. J Appl Phys, 1976, 47(11): 4839–4849

    Article  Google Scholar 

  13. Novick V J, Hummer C R, Dunn P F. Minimum dc electric field requirements for removing powder layers from a conductive surface. J Appl Phys, 1989, 65(8): 3242–3247

    Article  Google Scholar 

  14. Wu Y, Castle G S P, Inculet I I, et al. Induction charge on freely levitating particles. Powder Tech, 2003, 135–136: 59–64

    Article  Google Scholar 

  15. Jackson J D. Classical Electrodynamics. New York: Wiley, 1973

  16. Hu L, Wang H P, Xie W J, et al. Electrostatic levitation under the single-axis feedback control condition. Sci China-Phys Mech Astron, 2010, 53(8): 1438–1444

    Article  Google Scholar 

  17. Okada J T, Ishikawa T, Watanabe Y, et al. Viscosity of liquid boron. Phys Rev B, 2010, 81: 140201 (R)

    Google Scholar 

  18. Sridharan G, Chung S, Elleman D, et al. Optical sample-position sensing for electrostatic levitation. Proc. of the SPIE-Meeting, Orlando, USA, 1989, 1118: 160–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BingBo Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L., Wang, H., Li, L. et al. Geometric optimization of electrostatic fields for stable levitation of metallic materials. Sci. China Technol. Sci. 56, 53–59 (2013). https://doi.org/10.1007/s11431-012-5071-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-5071-7

Keywords

Navigation