Skip to main content
Log in

A new generation of plastic optical fibers and its functional exploiting

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

A major problem of plastic optical fibers (POFs) is large transmission loss in comparison with silica fibers. After adopting a new optical fiber structure, hollow-core Bragg fiber with cobweb-structured cladding, which can suppress the absorption losses of constituent materials by a factor of about 104–106, the problem of POFs with large losses is solved ultimately. With the advantage of flexibility and easy bending, the POFs with this structure can guide light with low transmission loss for information and energy in the wavelength range of visible light to terahertz (THz) wave (0.4–1000 μm). This new generation of POFs will find many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu D S, Yin Z M, Zhu S L, et al. Fiber Optics. Beijing: Science Press, 1987. 1–3

    Google Scholar 

  2. Yeh P, Yariv A, Marom E. Theory of Bragg fiber. J Opt Soc Am, 1978, 68(9): 1196–1201

    Article  Google Scholar 

  3. Doran N J, Blow K J. Cylindrical Bragg fibers: A design and feasibility study for optical communications. J Lightwave Technol, 1983, 1(4): 588–590

    Article  Google Scholar 

  4. Yink Y, Ripin D J, Fan S, et al. Guiding optical light in air using an all-dielectric structure. J Lightwave Technol, 1999, 17(11): 2039–2041

    Article  Google Scholar 

  5. Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air. Science, 1999, 285: 1537–1539

    Article  Google Scholar 

  6. Kaino T, Jinguji K, Nara S. Low loss poly (methylmethacrylate-d8) core optical fibers. Appl Phys Lett, 1983, 42(7): 567–569

    Article  Google Scholar 

  7. Koike Y. Giga-island concept realized with high-speed GI plastic optical fiber. Proc Second Asia-Pacific Polymer Fiber Optics Workshop, Hong Kong, 2003

  8. Yu R J. Overall solving worldwide difficult problem of plastic optical fiber high attenuation. The 2nd China Conference on Research, Production and Application of Plastic Optical Fibers and Polymer Photonic Devices, Qinhuangdao, 2006. 1–6

  9. Bartels R A, Paul A, Green H, et al. Generation of spatially coherent light at extreme ultraviolet wavelengths. Science, 2002, 297: 376–378

    Google Scholar 

  10. Harrington J A. A review of IR transmitting, hollow waveguides. Fiber Integr Opt, 2000, 19: 211–227

    Article  Google Scholar 

  11. Guan T S, Chen M Y, Zhang Z L, et al. Numerical smulation and analysis of losses in air-core plastic photonic bandgap fibers. Chin Opt Lett, 2005, 3(6): 313–315

    Google Scholar 

  12. Roberts P J, Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt Express, 2005, 13(1): 236–244

    Article  Google Scholar 

  13. Shaphard J D, MacPherson W N, Maier R R J, et al. Single-mode mid-IR guidance in a hollow-core photonic crystal fiber. Opt Express, 2005, 13(18): 7139–7144

    Article  Google Scholar 

  14. Dellemann G, Engeness T D, Skorobogatiy M, et al. Perfect mirrors extend hollow-core fiber applications. Photon Spectra, 2003, 37(6): 60–64

    Google Scholar 

  15. Johnson S G, Ibanescu M, Skorobogatiy M, et al. Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Opt Express, 2001, 9(13): 748–779

    Google Scholar 

  16. Yink Y, Ripin D J, Fan S, et al. Guiding optical light in air using an all-dielectric structure. J Lightwave Technol, 1999, 17(11): 2039–2041

    Article  Google Scholar 

  17. Temelkuran B, Hart S D, Benoit G, et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature, 2002, 420: 650–653

    Article  Google Scholar 

  18. Argyros A, Eijkelenborg M A van, Large M C J, et al. Hollow-core microstructured polymer optical fiber. Opt Lett, 2006, 31(2):172–174

    Article  Google Scholar 

  19. Yu R J, Chen M Y. Hollow-core fibers with cobweb. China Patent, CN200510060031.7

  20. Chen M Y, Yu R J, Tian Z G, et al. Optical and mechanical properties of hollow-core fibers with cobweb cladding structure. Chin Opt Lett, 2006, 4(2): 63–65

    Google Scholar 

  21. Huo L, Yu R J, Zhang B, et al. Design guideline of hollow-core fibres with cobweb cladding structure. Chin Phys Lett, 2006, 23(8): 2121–2124

    Article  Google Scholar 

  22. Yu R J, Zhang B, Chen M Y, et al. A new solution of reducing polymer optical fiber losses. Opt Commun, 2006, 266: 536–540

    Article  Google Scholar 

  23. Xu Y, Yariv A, Fleming J G, et al. Asymptotic analysis of silicon based Bragg fibers. Opt Express, 2003, 11(9): 1039–1049

    Article  Google Scholar 

  24. Kaino T, Fujiki M, Jinguji K. Preparation of plastic optical fibers. Rev Elec Commun Lab, 1984, 32: 478–488

    Google Scholar 

  25. Kapany N S, Simms R J. Recent developments of infrared fiber optics. Infrared Phys, 1965, 5: 69–80

    Article  Google Scholar 

  26. Sanghera J S, Aggarwal I D, Busse L E, et al. Chalcogenide optical fibers target mid-IR applications. Laser Focus World, 2005, 41(4): 83–87

    Google Scholar 

  27. Butvina L N, Dianov E M, Lichkova N V, et al. Crystalline silver halide fibers with optical losses lower than 50dB/km in broad IR region and their applications. Proc SPIE, 2000, 4083: 238–253

    Article  Google Scholar 

  28. Machida H, Matsuura Y, Ishikawa H, et al. Transmission properties of rectangular hollow waveguides for CO2 laser light. Appl Opt, 1992, 31(36): 7617–7622

    Article  Google Scholar 

  29. Rave E, Ephrat P, Goldberg M, et al. Silver halide photonic crystal fibers for the middle infrared. Appl Opt, 2004, 43(11): 2236–2241

    Article  Google Scholar 

  30. Hidaka T, Morikawa T, Shimada J. Hollow-core oxide-glass cladding optical fibers for middle-infrared region. J Appl Phys, 1981, 52(7): 4467–4471

    Article  Google Scholar 

  31. Han H, Park H, Cho M, et al. Terahertz pulse propagation in a plastic photonic crystal fiber. Appl Phys Lett, 2002, 80(15): 2634–2636

    Article  Google Scholar 

  32. Goto M, Quema A, Takahashi H, et al. Teflon photonic crystal fiber as terahertz waveguide. Jpn J Appl Phys, 2004, 43(2B): L317–L319

    Article  Google Scholar 

  33. Harrington J A, George R, Pedersen P, et al. Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation. Opt Express, 2004, 12(21): 5263–5268

    Article  Google Scholar 

  34. Chen L J, Chen H W, Kao T F, et al. Low-loss subwavelength plastic fiber for terahertz waveguiding. Opt Lett, 2006, 31(3): 308–310

    Article  Google Scholar 

  35. Yu R J, Zhang B, Zhang Y Q, et al. Proposal for ultra-low loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding. IEEE Photon Technol Lett, 2007, 19(12): 910–912

    Article  Google Scholar 

  36. Chantry G W, Fleming J W, Smith P M, et al. Far infrared and millimetre-wave absorption spectra of some low-loss polymers. Chem Phys Lett, 1971, 10(4): 473–477

    Article  Google Scholar 

  37. Jeunhomme L, Monerie M. Polarisation-maintaining single-mode fibre cable design. Electron Lett, 1980, 16(24): 921–922

    Article  Google Scholar 

  38. Huang H J. A circular-polarization-maintaining fiber and its fabricating method. China Patent, CN92108598.2, CN92113821.0

  39. Argyros A, Issa N, Bassett I, et al. Microstructured optical fiber for single-polarization air guidance. Opt Lett, 2004, 29(1): 20–22

    Article  Google Scholar 

  40. Yamashita T, Kamada K. Intrinsic transmission loss of polycarbonate core optical fiber. Jpn J Appl Phys, 1993, 32(6A): 2681–2686

    Article  Google Scholar 

  41. Bassett I M, Argyros A. Elimination of polarization degeneracy in round waveguides. Opt Express, 2002, 10(23): 1342–1346

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RongJin Yu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 60444003, 60577009)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, R., Zhang, B. A new generation of plastic optical fibers and its functional exploiting. Sci. China Ser. E-Technol. Sci. 51, 2207–2217 (2008). https://doi.org/10.1007/s11431-008-0242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0242-2

Keywords

Navigation