Skip to main content
Log in

Experimental study of high to intermediate temperature alteration in porphyry copper systems and geological implications

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Porphyry copper systems, which provide most of the world’s copper resource, are commonly associated with characteristic concentric zonation of alteration and mineralization. In-depth knowledge of the distribution and transport mechanism of elements in the alteration zones is essential for understanding the ore-forming processes. We employed flow-reaction apparatus to simulate the fluid-rock interactions during porphyry ore formation so as to investigate the mechanisms that govern the transport of elements and the development of zonation. The results indicate more heterogeneous distribution of elements in the experimental products at 450°C compared to those at lower temperatures, which implies a crucial role of temperature in controlling elements redistribution in hydrothermal systems. Heating advances potassic alteration and Ca leaching of wall rocks. To achieve the same degree of sodic alteration, it requires a higher concentration of Na+ in the fluid toward higher temperature. Temperature also facilitates the incorporation of Ti, Sr and Pb into silicate minerals through cation substitution. We infer from experimental results that from the center of intermediate to mafic volcanic wall rocks toward periphery, the contents of K and Ti should decrease and the contents of Ca, Zn and Mn should increase, whereas the trend for Si and Na could be non-monotonic. This study provides experimental and theoretical insights into a variety of vital geological observations, including anhydrite formation and the widespread development of potassic rather than sodic alteration in porphyry copper deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard P, Helgeson H C. 1982. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions: I, Theoretical considerations. Am J Sci, 282: 237–285

    Google Scholar 

  • Ague J J, Brimhall G H. 1989. Geochemical modeling of steady state fluid flow and chemical reaction during supergene enrichment of porphyry copper deposits. Econ Geol, 84: 506–528

    Article  Google Scholar 

  • Airy G B. 1855. On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philos Trans R Soc Lond, 145: 101–104

    Article  Google Scholar 

  • Barnes H L. 1997. Geochemistry of Hydrothermal Ore Deposits. 3rd ed. John Wiley & Sons. 1

    Google Scholar 

  • Bondar R J, Sanchez P L, Moncada D, Macinnis M S. 2014. Fluid inclusions in hydrothermal ore deposits. Treat Geochem, 13: 119–142

    Google Scholar 

  • Bickle M, Baker J. 1990. Migration of reaction and isotopic fronts in infiltration zones: Assessments of fluid flux in metamorphic terrains. Earth Planet Sci Lett, 98: 1–13

    Article  Google Scholar 

  • Bird D K, Schiffman P, Elders W A, Williams A E, McDowell S D. 1984. Calc-silicate mineralization in active geothermal systems. Econ Geol, 79: 671–695

    Article  Google Scholar 

  • Brimhall G H. 1977. Early fracture-controlled disseminated mineralization at Butte, Montana. Econ Geol, 72: 37–59

    Article  Google Scholar 

  • Carmichael D M. 1987. Induced stress and secondary mass transfer: Thermodynamic basis for the tendency toward constant-volume constraint in diffusion metasomatism. In: Helgeson H C, ed. Chemical Transport in Metasomatic Processes. NATO ASI Series (Series C: Mathematical and Physical Sciences). Dordrecht: Springer

  • Carten R B. 1986. Sodium-calcium metasomatism; chemical, temporal, and spatial relationships at the Yerington, Nevada, porphyry copper deposit. Econ Geol, 81: 1495–1519

    Article  Google Scholar 

  • Chang J, Li J W, Audétat A. 2018. Formation and evolution of multistage magmatic-hydrothermal fluids at the Yulong porphyry Cu-Mo deposit, eastern Tibet: Insights from LA-ICP-MS analysis of fluid inclusions. Geochim Cosmochim Acta, 232: 181–205

    Article  Google Scholar 

  • Chen H Y, Xiao B. 2014. Metallogenesis of subduction zone: The progress and future. Geosci Front, 21: 13–22

    Article  Google Scholar 

  • Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ Geol, 100: 801–818

    Article  Google Scholar 

  • Cooke D R, Baker M, Hollings P, Sweet G, Chang Z, Danyushevsky L, Gilbert G, Zhou T, White N C, Gemmell J B, Inglis S. 2014a. New advances in detecting systems-epidote mineral chemistry as a tool for vectoring and fertility assessments. Soc Econ Geologists Spec Publ, 18: 127–152

    Google Scholar 

  • Cooke D R, Agnew P, Hollings P. 2017. Porphyry indicator minerals (PIMS) and porphyry vectoring and fertility tools (PVFTS)-indicators of mineralization styles and recorders of hypogene geochemical dispersion halos. In: Exploration 17: Sixth Decennial International Conference on Mineral Exploration.

    Google Scholar 

  • Toronto Cooke D R, Hollings P, Wilkinson J J, Tosdal R M. 2014b. Geochemistry of porphyry deposits. Treat Geochem, 13: 357–381

    Article  Google Scholar 

  • Dang Z, Hou Y. 1995. Experimental study on the dissolution kinetics of basalt-water interaction. Acta Petrol Sin, 11: 9–15

    Google Scholar 

  • Du L T. 1986. Geochemistry of alkaline metasomatism. Sci China, 1: 83–92

    Google Scholar 

  • Du J G. 2010. High Pressure Geoscience. Beijing: Seismological Press

    Google Scholar 

  • Ferry J M, Dipple G M. 1991. Fluid flow, mineral reactions, and metaso-matism. Geology, 19: 211–214

    Article  Google Scholar 

  • Ferry J M, Dipple G M. 1992. Models for coupled fluid flow, mineral reaction, and isotopic alteration during contact metamorphism: The Notch Peak aureole, Utah. Ame Miner, 77: 577–591

    Google Scholar 

  • Fournier R O. 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ Geol, 94: 1193–1211

    Article  Google Scholar 

  • Fournier R O, Marshall W L. 1983. Calculation of amorphous silica solubilities at 25 to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water. Geochim Cosmochim Acta, 47: 587–596

    Article  Google Scholar 

  • Frank M R, Candela P A, Piccoli P M. 1998. K-feldspar-muscovite-andalusite- quartz-brine phase equilibria: An experimental study at 25 to 60 MPa and 400 to 550°C. Geochim Cosmochim Acta, 62: 3717–3727

    Article  Google Scholar 

  • Frank M R, Vaccaro D M. 2012. An experimental study of high temperature potassic alteration. Geochim Cosmochim Acta, 83: 195–204

    Article  Google Scholar 

  • Gautier J M, Oelkers E H, Schott J. 1994. Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150°C and pH 9. Geochim Cosmochim Acta, 58: 4549–4560

    Article  Google Scholar 

  • Gislason S R, Oelkers E H. 2003. Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochim Cosmochim Acta, 67: 3817–3832

    Google Scholar 

  • Gudbrandsson S, Wolff-Boenisch D, Gislason S R, Oelkers E H. 2011. An experimental study of crystalline basalt dissolution from 2=pH=11 and temperatures from 5 to 75°C. Geochim Cosmochim Acta, 75: 5496–5509

    Article  Google Scholar 

  • Harris N B W, Inger S, Ronghua X. 1990. Cretaceous plutonism in Central Tibet: An example of post-collision magmatism? J Volcanol Geotherm Res, 44: 21–32

    Article  Google Scholar 

  • Halter W E, Pettke T, Heinrich C A. 2002. The origin of Cu/Au ratios in porphyry-type ore deposits. Science, 296: 1844–1846

    Article  Google Scholar 

  • Haselton Jr H T, Cygan G L, Jenkins D M. 1995. Experimental study of muscovite stability in pure H2O and 1 molal KCl-HCl solutions. Geochim Cosmochim Acta, 59: 429–442

    Article  Google Scholar 

  • Helgeson H C. 1969. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci, 267: 729–804

    Google Scholar 

  • Heinrich C A. 1990. The chemistry of hydrothermal tin(-tungsten) ore deposition. Econ Geol, 85: 457–481

    Article  Google Scholar 

  • Heinrich C A. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Miner Deposita, 39: 864–889

    Article  Google Scholar 

  • Heinrich C A. 2006. From fluid inclusion microanalysis to large-scale hydrothermal mass transfer in the Earth’s interior. J Mineral Petrol Sci, 101: 110–117

    Article  Google Scholar 

  • Hemley J J, Montoya J W, Marinenko J W, Luce R W. 1980. Equilibria in the system Al2O3-SiO2-H2O and some general implications for alteration/mineralization processes. Econ Geol, 75: 210–228

    Article  Google Scholar 

  • Heinrich C A, Walshe J L, Harrold B P. 1996. Chemical mass transfer modelling of ore-forming hydrothermal systems: Current practise and problems. Ore Geol Rev, 10: 319–338

    Article  Google Scholar 

  • Hemley J J. 1959. Some mineralogical equilibria in the system K2O-Al2O3- SiO2-H2O. Am J Sci, 257: 241–270

    Google Scholar 

  • Hemley J J, Jones W R. 1964. Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism. Econ Geol, 59: 538–569

    Article  Google Scholar 

  • Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contr Mineral Petrol, 98: 455–489

    Article  Google Scholar 

  • Holyland P W. 1987. Dynamic modelling at the Renison tin mine. Pacific Rim Congress’87. 189–193

    Google Scholar 

  • Hu S M, Zhang R H, Zhang X T, Hang W B. 2010. Experimental study of water-basalt interaction in Luzong volcanic basin and its application. Acta Petrol Sin, 26: 2681–2693

    Google Scholar 

  • Huang W B, Zhang R H, Hu S M. 2011. Chemical dynamics of basaltseawater interaction near critical states. Acta Mineral Sin, Suppl: 692

    Google Scholar 

  • Hutcheon I, Shevalier M, Abercrombie H J. 1993. pH buffering by metastable mineral-fluid equilibria and evolution of carbon dioxide fugacity during burial diagenesis. Geochim Cosmochim Acta, 57: 1017–1027

    Article  Google Scholar 

  • Kerrich R. 2000. The geodynamics of world-class gold deposits, characteristics, space-time distribution, and origins. Rev. Econ Geol, 13: 501–551

    Google Scholar 

  • Korzhinskii D S. 1959. Acid-basic interaction of components in silicate melts and the direction of the cotectic lines. Doklady Akademii Nauk SSSR, 128: 383–386

    Google Scholar 

  • Korzhiniskii D S. 1970. Theory of Metasomatie Zoning. Oxford: Oxford University Press

    Google Scholar 

  • Landtwing M R, Pettke T, Halter W E, Heinrich C A, Redmond P B, Einaudi M T, Kunze K. 2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: The Bingham porphyry. Earth Planet Sci Lett, 235: 229–243

    Article  Google Scholar 

  • Landtwing M R, Furrer C, Redmond P B, Pettke T, Guillong M, Heinrich C A. 2010. The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Econ Geol, 105: 91–118

    Google Scholar 

  • Liang H Y, Sun W, Su W C, Zartman R E. 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Econ Geol, 104: 587–596

    Article  Google Scholar 

  • Lasaga A C, Rye D M. 1993. Fluid flow and chemical reaction kinetics in metamorphic systems. Am J Sci, 293: 361–404

    Google Scholar 

  • Liu Y, Liu H C, Li X H. 1996. Simultaneous and precise determination of 40 trace elements in rock Samples using ICP-MS. Geochimica, 6: 552–558

    Google Scholar 

  • Liu Y J. 1984. Geochemistry of Elements. Beijing: Science Press

    Google Scholar 

  • Liu Y S, Zhang G L. 1996. An Experimental study on sea water-basalt interaction at 250–500°C and 100 MPa. Geochimica, 1: 53–62

    Google Scholar 

  • Lowell J D, Guilbert J M. 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ Geol, 65: 373–408

    Article  Google Scholar 

  • Luhmann A J, Tutolo B M, Tan C, Moskowitz B M, Saar M O, Seyfried Jr. W E. 2017. Whole rock basalt alteration from CO2-rich brine during flow-through experiments at 150°C and 150 bar. Chem Geol, 453: 92–110

    Article  Google Scholar 

  • Merino E, Moore C, Ortoleva P, Ripley E. 1986. Mineral zoning in sediment- hosted copper-iron sulfide deposits—A quantitative kinetic approach. In: Geology and Metallogeny of Copper Deposits. Special Publication No. 4 of the Society for Geology Applied to Mineral Deposits. Berlin: Springer. 559–571

    Google Scholar 

  • Montoya J W, Hemley J J. 1975. Activity relations and stabilities in alkali feldspar and mica alteration reactions. Econ Geol, 70: 577–583

    Article  Google Scholar 

  • Mottl M J, Holland H D. 1978. Chemical exchange during hydrothermal alteration of basalt by seawater—I. Experimental results for major and minor components of seawater. Geochim Cosmochim Acta, 42: 1103–1115

    Article  Google Scholar 

  • Murphy W M, Oelkers E H, Lichtner P C. 1989. Surface reaction versus diffusion control of mineral dissolution and growth rates in geochemical processes. Chem Geol, 78: 357–380

    Article  Google Scholar 

  • Nash J T. 1976. Fluid-inclusion petrology—Data from porphyry copper deposits and applications to exploration: A summary of new and published descriptions of fluid inclusions from 36 porphyry copper deposits and discussion of possible applications to exploration for copper deposits. US Govt. Print. Off

    Google Scholar 

  • Oelkers E H. 2001. General kinetic description of multioxide silicate mineral and glass dissolution. Geochim Cosmochim Acta, 65: 3703–3719

    Article  Google Scholar 

  • Oelkers E H, Schott J. 2001. An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution. Geochim Cosmochim Acta, 65: 1219–1231

    Article  Google Scholar 

  • Oelkers E H, Schott J, Devidal J L. 1994. The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim Cosmochim Acta, 58: 2011–2024

    Article  Google Scholar 

  • Orville P M. 1962. Alkali metasomatism and feldspars. Norsk Geologisk Tidsskrift. 283–316

    Google Scholar 

  • Pollard P J. 2001. Sodic(-calcic) alteration in Fe-oxide-Cu-Au districts: An origin via unmixing of magmatic H2O-CO2-NaCl±CaCl2-KCl fluids. Miner Depos, 36: 93–100

    Article  Google Scholar 

  • Ré C L, Kaszuba J P, Moore J N, McPherson B J. 2014. Fluid-rock interactions in CO2-saturated, granite-hosted geothermal systems: Implications for natural and engineered systems from geochemical experiments and models. Geochim Cosmochim Acta, 141: 160–178

    Article  Google Scholar 

  • Reed M H. 1997. Hydrothermal alteration and its relationship to ore fluid composition. Geochem Hydrothermal Ore Deposits, 1: 303–365

    Google Scholar 

  • Redmond P B, Einaudi M T, Inan E E, Landtwing M R, Heinrich C A. 2004. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. Geology, 32: 217–220

    Article  Google Scholar 

  • Redmond P B, Einaudi M T. 2010. The Bingham Canyon porphyry Cu-Mo-Au deposit. I. Sequence of intrusions, vein formation, and sulfide deposition. Econ Geol, 105: 43–68

    Google Scholar 

  • Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev, 40: 1–26

    Article  Google Scholar 

  • Richards J P, Kerrich R. 2007. Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Econ Geol, 102: 537–576

    Article  Google Scholar 

  • Ringwood A E. 1977. Petrogenesis in Island Arc Systems. Island Arcs, Deep Sea Trenches and Back-arc Basins. Washington: American Geophysical Union. 311–324

    Google Scholar 

  • Roedder E. 1971. Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Econ Geol, 66: 98–118

    Article  Google Scholar 

  • Rogers K L, Neuhoff P S, Pedersen A K, Bird D K. 2006. CO2 metasomatism in a basalt-hosted petroleum reservoir, Nuussuaq, West Greenland. Lithos, 92: 55–82

    Article  Google Scholar 

  • Rusk B G, Reed M H, Dilles J H, Klemm L M, Heinrich C A. 2004. Compositions of magmatic hydrothermal fluids determined by LA-ICPMS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT. Chem Geol, 210: 173–199

    Article  Google Scholar 

  • Rusk B G, Reed M H, Dilles J H. 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Econ Geol, 103: 307–334

    Article  Google Scholar 

  • Schott J, Pokrovsky O S, Oelkers E H. 2009. The link between mineral dissolution/precipitation kinetics and solution chemistry. Rev Mineral Geochem, 70: 207–258

    Article  Google Scholar 

  • Seedorff E, Dilles J H, Proffett J M. 2005. Porphyry deposits: Characteristics and origin of hypogene features. Econ Geol, 100: 251–298

    Google Scholar 

  • Sillitoe R H. 1972. A plate tectonic model for the origin of porphyry copper deposits. Econ Geol, 67: 184–197

    Article  Google Scholar 

  • Sillitoe R H. 1973. The tops and bottoms of porphyry copper deposits. Econ Geol, 68: 799–815

    Article  Google Scholar 

  • Sillitoe R H. 2010. Porphyry copper systems. Econ Geol, 105: 3–41

    Article  Google Scholar 

  • Stern C R, Funk J A, Skewes M A, Arevalo A. 2007. Magmatic anhydrite in plutonic rocks at the El Teniente Cu-Mo deposit chile, and the role of sulfur- and copperrich magmas in its formation. Econ Geol, 102: 1335–1344

    Article  Google Scholar 

  • Sun S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Lond Spec Publ, 42: 313–345

    Article  Google Scholar 

  • Sun W D, Ling M X, Yang X Y, Fan W M, Ding X, Liang H Y. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview. Sci China Earth Sci, 53: 475–484

    Article  Google Scholar 

  • Sverjensky D A, Hemley J J, D’angelo W M. 1991. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria. Geochim Cosmochim Acta, 55: 989–1004

    Article  Google Scholar 

  • Tan K X, Zhang Z R, Wang Z G. 1994. The Mechanism of surface chemical kinetics of dissolution of minerals. Acta Mineral Sin, 3: 207–214

    Google Scholar 

  • Wang Y F, Chen H Y, Xiao B, Han J S. 2016. Porphyritic-overlapped mineralization of Tuwu and Yandong copper deposits in Eastern Tianshan Mountains, Xinjiang. Mineral Deposits, 35: 51–68

    Google Scholar 

  • Wang Y R, Wang Z X, Zhang S. 2000. Water-rock reaction experiment and mineralization. Bull Mineral Petrol Geochem, 19: 426–427

    Google Scholar 

  • Wilkinson J J, Chang Z, Cooke D R, Baker M J, Wilkinson C C, Inglis S, Chen H, Bruce Gemmell J. 2015. The chlorite proximitor: A new tool for detecting porphyry ore deposits. J Geochem Exploration, 152: 10–26

    Article  Google Scholar 

  • Winkler H G F, von Platen H. 1961. Experimentelle gesteinsmetamorphose —V. Geochim Cosmochim Acta, 24: 250–259

    Article  Google Scholar 

  • Xiao B, Chen H Y, Hollings P, Han J S, Wang Y F, Yang J T, Cai K D. 2015. Magmatic evolution of the Tuwu-Yandong porphyry Cu belt, NW China: Constraints from geochronology, geochemistry and Sr-Nd-Hf isotopes. Gondwana Res, 43: 74–91

    Article  Google Scholar 

  • Yang Z, Hou Z, White N C, Chang Z S, Li Z Q, Song Y C. 2009. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geol Rev, 36: 133–159

    Article  Google Scholar 

  • Zhang D H, Xu J H, Yu X Q, Li J K, Mao S D, Wang K Q, Li Y Q. 2011. The diagenetic and metallogenic depth: Main constraints and the estimation methods. Geol Bull China, 30: 112–125

    Google Scholar 

  • Zhang Y X. 2010. Geochemical Kinetics. Beijing: Higher Education Press

    Google Scholar 

Download references

Acknowledgements

Zhang Dongwei, Li Dengfeng, Zhang Shitao, Zhao Liandang, Xu Chao and Huang Jianhan are thanked for the laboratory assistance. We also appreciate the constructive comments from three anonymous reviewers which significantly improved this manuscript. This work was supported by National Natural Science Foundation of China (Grant No. U1603244), Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB1803206) and Science and Technology Planning Project of Guangdong Province (Grant No. 2017B030314175).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huayong Chen or Long Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, H., Su, L. et al. Experimental study of high to intermediate temperature alteration in porphyry copper systems and geological implications. Sci. China Earth Sci. 62, 550–570 (2019). https://doi.org/10.1007/s11430-018-9295-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9295-1

Keywords

Navigation