Skip to main content
Log in

Production of an emericellin and its analogues as fungal biological responses for Shimbu-to extract

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

This research examined the production of fungal metabolites as a biological response to Kampo medicines. Shimbu-to (SMB) is a Kampo medicine composed of five herbal components: peony root (Shakuyaku), ginger (Shokyo), processed aconite root (Bushi), Poria sclerotium (Bukuryo), and Atractylodes lancea rhizomes (Sojutsu). High-performance liquid chromatography (HPLC) analysis of the fungus Aspergillus nidulans CBS 112.46 incubated in potato dextrose broth supplemented with SMB extract revealed emericellin (2) as the major peak and new xanthone analogues 24-hydroxyshamixanthone (1), shamixanthone (3), epishamixanthone (4), pre-shamixanthone (5), and variecoxanthone A (6) as minor peaks. The structure of 1 was determined by detailed analysis of 1D-NMR, 2D-NMR, and MS data. The results suggest that SMB extract regulates the biosynthesis of emericellin and its analogues in A. nidulans. Further investigations revealed that glucose induces the biosynthesis of emericellin and its analogues in A. nidulans in a concentration-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Henrikson JC, Hoover AR, Joyner PM, Cichewicz RH (2009) A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org Biomol Chem 7:435–438

    Article  CAS  Google Scholar 

  2. Miao FP, Liang XR, Liu XH, Ji NY (2014) Aspewentins A-C, norditerpenes from a cryptic pathway in an algicolous strain of Aspergillus wentii. J Nat Prod 77:429–432

    Article  CAS  Google Scholar 

  3. Zain ME (2009) Effect of olive oil on secondary metabolite and fatty acid profiles of Penicillium expansum, Aspergillus flavus, A. parasiticus and A. ochraceus. Aust J Basic Appl Sci 3:4274–4280

    CAS  Google Scholar 

  4. Yu-Ming C, Chien-Kei W, Da-Wei C, Mohamed E, Chi-Ting H, Teigo A, Yoshiteru O, Tusty-Jiuan H, Tsong-Long H, Yang-Chang W, Fang-Rong C (2013) An epigenetic modifier enhances the production of anti-diabetic and anti-inflammatory sesquiterpenoids from Aspergillus sydowii. Bioorg Med Chem 21:3866–3872

    Article  Google Scholar 

  5. Toghueo KRM, Dinkar S, Boyom FF (2016) Stimulation of the production of new volatile and non-volatile metabolites by endophytic Aspergillus niger using small organic chemicals. Curr Res Environ Appl Mycol 6:256–267

    Article  Google Scholar 

  6. Al-Qarawi AA, Abd-Allah EF, Hashem A (2013) Effect of Ephedra alata Decne. on lipids metabolism of Aspergillus flavus link. Bangladesh J Bot 42:45–49

    Article  Google Scholar 

  7. Masayoshi I, Takashi H, Yuichi H, Keiichi F, Tomitake T, Yukiteru K (1975) Emericellin, a new metabolite from Aspergillus nidulans. Agric Biol Chem 39:291–292

    Google Scholar 

  8. Kuldip KC, Christopher F, John SEH, Thomas JS, Kenneth Y (1974) The biosynthesis of fungal metabolites part III structure of shamixanthone and tajixanthone, metabolites of Aspergillus variecolor. J Chem Soc Perkin Trans 1:1584–1593

    Google Scholar 

  9. Masayoshi I, Takashi H, Yuichi H, Keiichi F, Tomitake T, Yukiteru K (1976) Epishamixanthone, a new metabolite from Aspergillus rugulosus. Agric Biol Chem 40:1051–1052

    Google Scholar 

  10. Anindita S, Alexander NF, Kirstin S, Fabian H, Volker S, Pranatchareeya C, Martin W, Martin R, Axel AB, Christian H, Uwe H (2012) Differential expression of silent polyketide biosynthesis gene clusters in chemostat cultures of Aspergillus nidulans. J Biotechnol 160:64–71

    Article  Google Scholar 

  11. Kuldip KC, John SEH, Thomas JS, Kenneth Y (1975) The biosynthesis of fungal metabolites part V structure of variecoxanthones A, B, and C, metabolites of Aspergiiius variecolor; conversion of variecoxanthone A into (±)-De-C-prenylepishamixanthone. J Chem Soc Perkin Trans 1(6):543–548

    Google Scholar 

  12. James FS, Ruth E, Jui-Hsiang H, Junko Y, Sofina J, Yi-Ming C, Clay CCW, Berl RO (2011) Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. J Am Chem Soc 133:4010–4017

    Article  Google Scholar 

  13. Atoui A, Kastner C, Larey CM, Thokala R, Etxebeste O, Espeso EA, Fischer R, Calvo AM (2010) Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. Fungal Genet Biol 47(12):962–972

    Article  CAS  Google Scholar 

  14. Park JY, Oh SA, Anderson AJ, Neiswender J, Kim JC, Kim YC (2011) Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett Appl Microbiol 52:532–537

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Japan Society for the Promotion of Science (JSPS; Grant number 15K08005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoo Hosoe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11418_2017_1156_MOESM1_ESM.tif

Fig. S1 HPLC chromatograms of mycelia extracts obtained from A. nidulans cultured on PD broth with supplements indicated below, monitored at UV 300 nm. (a) SMB, (b) CHCl3 lay. (c) AcOEt lay. (d) 1-BuOH lay. (e) H2O lay. (f) none. (TIFF 60 kb)

11418_2017_1156_MOESM2_ESM.tif

Fig. S2 HPLC analysis of emericellin produced by A. nidulans cultured on PDB with SMB. Fractions obtained by column chromatography of the water fraction using a DIAION HP21 column. (TIFF 33 kb)

11418_2017_1156_MOESM3_ESM.tif

Fig. S3 HPLC analysis of sugar with RI detection. (a) SMB H2O Fr., (b) Fructose (tR = 8.4 min), (c) Glucose (tR = 9.0 min), (d) Sucrose (tR = 10.7 min). (TIFF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, N., Wakana, D., Takeda, H. et al. Production of an emericellin and its analogues as fungal biological responses for Shimbu-to extract. J Nat Med 72, 357–363 (2018). https://doi.org/10.1007/s11418-017-1156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-017-1156-8

Keywords

Navigation